
PyEpics: Epics Channel Access for Python

Matthew Newville

Consortium for Advanced Radiation Sciences
University of Chicago

February 16, 2011

http://cars9.uchicago.edu/software/python/pyepics3/

Epics Channel Access for Python M Newville / 16-Feb-2011

Why Python?

For General Programming:

Clean Syntax Easy to learn, remember, and read

High Level No pointers, dynamic memory, automatic memory

Cross Platform code portable to Unix, Windows, Mac.

Object Oriented full object model, name spaces.

Easily Extensible with C, C++, Fortran, . . . (Java, .NET)

Many Libraries GUIs, Databases, Web, Image Processing, . . .

For Scientific Applications:

numpy Fast arrays.

matplotlib Excellent Plotting library

scipy Numerical Algorithms (FFT, lapack, fitting, . . .)

sage Symbolic math (ala Maple, Mathematica)

Free Python, all the tools are Free (BSD, LGPL, GPL).

Epics Channel Access for Python Motivation and History M Newville / 16-Feb-2011

Epics Channel Access for Python: A Brief History

It is easy to wrap C libraries for Python.

There have been several wrappings of Epics CA over the years:

G Savage (FNAL) ∼1999: Very low-level wrapping, much like C interface: pass
around chids and specifying DBR XXXX types. Used SWIG.

N. Yamamoto (KEK), X. Wang (PSI) built upon Savage’s wrapping, updating
for better 3.14 support, and using C-Python API directly.

MN made a custom wrapping of CA (EpicsCA) ∼2002. Emphasis on a Python
PV object, incomplete low-level interface. Used SWIG.

M. Abbott (Diamond) ∼2008 wrote an interface with ctypes, but heavily tied
with a non-standard third-party pseudo-threading library.

Python 3: large changes the C API. Porting SWIG / C-API code is real work.
Supporting Python 2 and 3 with one code base is hard.

Too many implementations:- Most missing some features or documentation.
Choice paralysis!

Epics Channel Access for Python Motivation and History M Newville / 16-Feb-2011

Channel Access for Python

In Sept 2009, A tech-talk discussion asked “Can we combine forces?”

My own library was difficult to maintain (especially Windows).
So I rewrote from scratch.

Wish List for Channel Access interface to Python:

complete(?) access to low-level CA to python.

high-level PV class built upon this.

thread support (as well as Python can).

preemptive callbacks: connection, event, put.

good documentation and unit-testing.

easy installation, including Windows.

support Python 2 and Python 3.

Key decision: Use Python’s ctypes module.

PyEpics is a low-level interface to CA, with callbacks
(C pre-emptively calls user-supplied Python code)
and access to non-trivial C data structures.

Zero lines of C.

Epics Channel Access for Python Motivation and History M Newville / 16-Feb-2011

Using ctypes

The ctypes library is a foreign function interface, giving access to C data types and
functions in dynamic libraries at Python runtime.

ctypes for libca.so

import ctypes

libca = ctypes.cdll.LoadLibrary(’libca.so’)
libca.ca context create(1)
chid = ctypes.c long()

libca.ca create channel(’MyPV’, 0,0,0, ctypes.byref(chid))
libca.ca pend event.argtypes = [ctypes.c_double]
libca.ca pend event(1.0e-3)

print ’Connected: ’, libca.ca state(chid) == 2 # (CS CONN)
print ’Host Name: ’, libca.ca host name(chid)
print ’Field Type: ’, libca.ca field type(chid)
print ’Element Count: ’, libca.ca element count(chid)

Using ctypes makes several Wish List items trivial:

1 Low-level interface to CA easy to implement, debug.
2 Install on all systems (even Windows) is python setup.py install.

libca and libCom are found at run-time (easy upgrading).
3 Best thread support possible, with Python Global Interpreter Lock.
4 Python 2 and Python 3 supported with little code change.

Epics Channel Access for Python The ctypes module M Newville / 16-Feb-2011

PyEpics3: Overview

PyEpics3 contains 3 levels of access to CA:

Low level: ca and dbr modules. C-like API, nearly complete.

High level: PV object. Built on ca module.

Functional: caget(), caput(), cainfo(), camonitor(), Built on PV.

Other classes (Alarm, Devices, wxPython GUIs) are also built from PV.

Functional Interfaces: similar to command-line tools or EZCA library.

caget() / caput()

>>> from epics import caget, caput, cainfo, camonitor

>>> m1 = caget(’XXX:m1.VAL’)
>>> print m1
-1.2001

>>> caput(’XXX:m1.VAL’, 0)

>>> caput(’XXX:m1.VAL’, 2.30, wait=True)

>>> print caget(’XXX:m1.DIR’)
1

>>> print caget(’XXX:m1.DIR’, as_string=True)
’Pos’

caput(pvname, wait=True) waits
until processing completes.

caget(pvname, as string=True)
returns String Representation of
value (Enum State Name, formatted
doubles, . . .)

This is probably too easy, huh?

Epics Channel Access for Python PyEpics3 Overview, Functional Interface M Newville / 16-Feb-2011

cainfo() and camonitor()

cainfo() shows many informational
field for a PV:

cainfo()

>>> cainfo(’XXX.m1.VAL’)
== XXX:m1.VAL (double) ==

value = 2.3
char_value = 2.3000
count = 1
units = mm
precision = 4
host = xxx.aps.anl.gov:5064
access = read/write
status = 1
severity = 0
timestamp = 1265996455.417 (2010-Feb-12 11:40:55.417)
upper_ctrl_limit = 200.0
lower_ctrl_limit = -200.0
upper_disp_limit = 200.0
lower_disp_limit = -200.0
upper_alarm_limit = 0.0
lower_alarm_limit = 0.0
upper_warning_limit = 0.0
lower_warning = 0.0
PV is monitored internally
no user callbacks defined.

=============================

camonitor() monitors a PV, writing out
a message for every value change, until
camonitor clear() is called:

camonitor()

>>> camonitor(’XXX:DMM1Ch2_calc.VAL’)
XXX:DMM1Ch2_calc.VAL 2010-02-12 12:12:59.502945 -183.9741
XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:00.500758 -183.8320
XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:01.501570 -183.9309
XXX:DMM1Ch2_calc.VAL 2010-02-12 12:13:02.502382 -183.9285

>>> camonitor_clear(’XXX:DMM1Ch2_calc.VAL’)

You can supply your own callback to
camonitor() to do something other than
write out the new value.

The epics module maintains a global cache of PVs when using the ca***() functions:
connections to underlying PVs are maintained for the session.

Epics Channel Access for Python PyEpics3 Overview, Functional Interface M Newville / 16-Feb-2011

ca module: low-level, but still Python

With ctypes, wrapping the CA functions is pretty easy.
Small tweaks were made to make the library more Pythonic than C-like:

The ca interface

from epics import ca
chid = ca.create_channel(’XXX:m1.VAL’)
count = ca.element_count(chid)
ftype = ca.field_type(chid)

print "Channel ", chid, count, ftype

value = ca.get()
print value

ca.put(chid, 1.0)
ca.put(chid, 0.0, wait=True)

user defined callback
def onChanges(pvname=None, value=None, **kw):

fmt = ’New Value for %s value=%s\n’
print fmt % (pvname, str(value))

subscribe for changes
eventID = ca.create_subscription(chid,

userfcn=onChanges)
while True:

time.sleep(0.001)

Enhancements for Python:

Python namespaces, exceptions used.
! ca fcn → ca.fcn
! DBR XXXX → dbr.XXXX
! SEVCHK → Python exceptions

OK to forget many tedious chores:
! initialize CA.
! create a context (unless explicitly

using Python threads).
! wait for connections.
! clean up at exit.

get() returns value.

No need to worry about data types.

Python decorators are used to lightly wrap CA functions so that:

CA is initialized, finalized.

Channel IDs are valid, and connected before being used.

Epics Channel Access for Python ca module M Newville / 16-Feb-2011

CA interface design choices

Essentially all the CA functions are defined at work “Just like C”.

The Preemptive Callback model is used by default. OK to forget ca.pend event(). Can be
turned off, but only before CA is initialized.

DBR CTRL and DBR TIME variants supported, but not DBR STS or DBR GR.

Array data will be converted to numpy arrays (if available).

Some functions (ca set puser(), ca add exception event()) are not needed.

EPICS CA MAX ARRAY BYTES set to 16777216 (16Mb) unless already set.

Connection and Event callbacks are (almost) always used internally. User-defined callback
functions are called by the internal callback.

Event Callbacks are used internally except for large arrays, as defined by
ca.AUTOMONITOR LENGTH (default = 16K).

Event subscriptions use mask = (EVENT | LOG | ALARM.)

Epics Channel Access for Python ca module M Newville / 16-Feb-2011

PV objects: Easier to use, Full-featured.

Most Python programmers will want to use PV objects:

Using PV objects

>>> from epics import PV
>>> pv1 = PV(’XXX:m1.VAL’)
>>> print pv1.count, pv1.type
(1, ’double’)

>>> print pv1.get()
-2.3456700000000001

>>> pv1.value = 3.0 # = pv1.put(3.0)
>>> pv1.value # = pv1.get()
3.0
>>> print pv.get(as_string=True)
’3.0000’

>>> # user defined callback
>>> def onChanges(pvname=None, value=None, **kws):
... fmt = ’New Value for %s value=%s\n’
... print fmt % (pvname, str(value))

>>> # subscribe for changes
>>> pv1.add_callback(onChanges)
>>> while True:
... time.sleep(0.001)

Automatic connection management.

Attributes for many properties (count,
type, host,upper crtl limit, . . .)

Can use get() / put() methods

. . . or PV.value attribute.

as string uses ENUM labels or
Precision.

put() can wait or run user callback
when complete.

connection callbacks.

multiple event callbacks.

Epics Channel Access for Python PV: object-oriented interface M Newville / 16-Feb-2011

User-Supplied Callbacks for PV Changes

Callback: User-defined function called when a PV changes.
This function must have a pre-defined call signature, using keyword arguments:

Simple Callback

import epics
import time
def onChanges(pvname=None, value=None,

char_value=None, **kw):
print ’PV Changed! ’, pvname, \

char_value, time.ctime()

mypv = epics.PV(pvname)

Add a callback
mypv.add_callback(onChanges)

print ’Now wait for changes’

t0 = time.time()
while time.time() - t0 < 60.0:

time.sleep(1.e-3)

print ’Done.’

pvname name of PV

value new value

char value String representation of value

count element count

ftype field type (DBR integer)

type python data type

status ca status (1 == OK)

precision PV precision . . .

Many CTRL values (limits, units, . . .) passed in.

Use **kws recommended!

Callbacks for the ca module have similar signatures (without CTRL parameters).

put() and connection callbacks have similar signatures.

Epics Channel Access for Python PV: object-oriented interface M Newville / 16-Feb-2011

PVs for Waveforms

Waveform data is very important for experimental data.

double waveform

>>> from epics import PV
>>> scan_p1 = PV(’XXX:scan1.P1PA’)
>>> print scan_p1.get()

array([-0.08 , -0.078 , -0.076 , ...,
1.99599814, 1.99799919, 2.])

Waveforms can also be used for long strings:

character waveform

>>> from epics import PV
>>> folder = PV(’XXX:directory’)
>>> folder.get()
array([84, 58, 92, 120, 97, 115, 95, 117, 115,

101, 114, 92, 77, 97, 114, 99, 104, 50, 48,
49, 48, 92, 70, 97, 115, 116, 77, 97, 112,
0, 0, ... 0])

>>> folder.get(as_string=True)
’T:\xas user\March2010\FastMap’

Epics Channel Access for Python PV: object-oriented interface M Newville / 16-Feb-2011

Alarms: react to PV values

An alarm defines user-supplied code to run when a PV’s value changes to some
condition. Examples might be:

send email, or some other alert message

turn off some system (non-safety-critical, please!)

Epics Alarm

from epics import Alarm, poll

def alertMe(pvname=None, char value=None, **kw):
print "Soup is on! %s = %s" % (pvname, char_value)

my_alarm = Alarm(pvname = ’WaterTemperature.VAL’,
comparison = ’>’,
callback = alertMe,
trip point = 100.0,
alert delay = 600)

while True:
poll()

When a PV’s value matches the
comparison with the trip point,
the supplied callback is run.
A delay is used to prevent multi-
ple calls for values that “bounce
around”.

Epics Channel Access for Python Alarms M Newville / 16-Feb-2011

Epics Data Archiver – Epics+Python+MySQL+Apache

Main features:

! 5000 PVs monitored

CA callbacks archive data
to MySQL tables.

templates for status web
pages

plots of historical data

web-definable email alerts

PV values displayed as html links to Plot of Data

Epics Channel Access for Python Web-based Data Archiver M Newville / 16-Feb-2011

Epics Archiver: Plotting Historical Data

Plots:

default to past day

using Gnuplot (currently)

Plot “From now” or with
“Date Range”

Plot up to 2 PVs

“Related PVs” list for
common pair plots

pop-up javascript Calendar
for Date Range

String labels for Enum PVs

Epics Channel Access for Python Web-based Data Archiver M Newville / 16-Feb-2011

Devices: collections of PVs

A device is a collection of PVs, usually sharing a Prefix.

Similar to an Epics Record, but only relying on names.

Epics Analog Input as Python epics.Device

import epics
class ai(epics.Device):

"Simple analog input device"
_fields = (’VAL’, ’EGU’, ’HOPR’, ’LOPR’, ’PREC’,
’NAME’, ’DESC’, ’DTYP’, ’INP’, ’LINR’, ’RVAL’,
’ROFF’, ’EGUF’, ’EGUL’, ’AOFF’, ’ASLO’, ’ESLO’,
’EOFF’, ’SMOO’, ’HIHI’, ’LOLO’, ’HIGH’, ’LOW’,
’HHSV’, ’LLSV’, ’HSV’, ’LSV’, ’HYST’)

def __init__(self, prefix, delim=’.’):
epics.Device.__init__(self, prefix, delim=delim,

self._fields)

A Device maps PVs for a set of
“Suffixes” to attributes.

Can use either get() and put()
methods or attributes.

Using an ai device

>>> from epics.devices import ai
>>> Pump1 = ai(’XXX:ip2:PRES’)
>>> print "%s = %s %s" % (Pump1.DESC,

Pump1.get(’VAL’,as_string=True),
Pump1.EGU)

Ion pump 1 Pressure = 4.1e-07 Torr
>>> print Pump1.get(’DTYP’, as_string=True)
asyn MPC
>>> Pump1.PV(’VAL’) # Get underlying PV
<PV ’XXX:ip1:PRES.VAL’, count=1, type=double, access=read/write>

Yes, it is that easy.

Epics Channel Access for Python Devices M Newville / 16-Feb-2011

Extending Devices

Of course, a device can have methods added to it.

Scaler device

import epics
class Scaler(epics.Device):

"SynApps Scaler Record"

...
def OneShotMode(self):

"set to one shot mode"
self.CONT = 0

def CountTime(self, ctime):
"set count time"
self.TP = ctime

...

Add Methods to turn a Device into a high-
level Epics Object.

Can also complex functionality, from dy-
namic code at the client level.

Long calculations, DB lookups, etc.

Using a Scaler:

s1 = Scaler(’XXX:scaler1’)
s1.setCalc(2, ’(B-2000*A/10000000.)’)
s1.enableCalcs()
s1.OneShotMode()
s1.Count(t=5.0)
print ’Names: ’, s1.getNames()
print ’Raw values: ’, s1.Read(use_calcs=False)
print ’Calc values: ’, s1.Read(use_calcs=True)

Example Program: Read Ion Chamber
currents, amplifier settings, x-ray energy,
compute photon flux, post to PVs.

Needs table of coefficients (∼16kBytes of
data), but then ∼100 lines of Python.

A Motor Device has ∼100 fields, and methods to move
motors in User, Dial, Raw units, check limits, etc.

Epics Channel Access for Python Devices M Newville / 16-Feb-2011

GUI Controls with wxPython

Many PV types (Double, Float, String, Enum) have wxPython widgets, which
automatically tie to the PV.

Sample wx widget Code

from epics import PV
from epics.wx import wxlib

txt wid = wxlib.pvText(Parent, pv=PV(’SomePV’),
size=(100,-1))

txtCtrl wid = wxlib.pvTextCtrl(Parent, pv=PV(’SomePV’))

dropdown wid = pvEnumChoice(Parent, pv=PV(’EnumPV.VAL’))

buttons wid = pvEnumButtons(Parent, pv=PV(’EnumPV.VAL’),
orientation=wx.HORIZONTAL)

flt wid = wxlib.pvFloatCtrl(Parent, size=(100, -1),
precision=4)

flt wid.set_pv(PV(’XXX.VAL’))

pvText read-only text for Strings

pvTextCtrl editable text for Strings

pvEnumChoice Drop-Down list for
ENUM states.

pvEnumButtons Button sets for
ENUM states.

pvAlarm Pop-up message window.

pvFloatCtrl editable text for Floats,
only valid numbers that obey limits.

A common mixin class allows extensions to other widgets. (More coming soon!)

Function Decorators help write code that is safe against mixing GUI and CA threads.

Epics Channel Access for Python wxPython GUI Controls M Newville / 16-Feb-2011

Some Epics wxPython Apps:

Area Detector Display.

A 1360× 1024 RGB image (4Mb)
from Prosilica GigE camera.

Displays at ∼5Hz.

Can display a selected ROI at a
much faster rate.

MEDM-like Motor Display.
Much easier to use.

Built on Motor device.

Epics Channel Access for Python wxPython GUI Controls M Newville / 16-Feb-2011

wx Motor Controls

Entry Values can only be valid number.

Entry Values outside of limits are
highlighted. On “Return”, the
nearest limit is displayed.

Tweak Values are auto-generated from
precision and range.

Cursor Focus is more modern than MEDM.

More Button leads to Detail Panel.

Epics Channel Access for Python wxPython GUI Controls M Newville / 16-Feb-2011

Custom Sample Stage Application

A custom GUI for controlling a six-motor Sample Stage:

Named Positions Any Position can be saved by named and restored.

Sample Image captured at each position.

Simple Configuration with INI file. (Soon: SQL).

Epics Channel Access for Python wxPython Applications M Newville / 16-Feb-2011

Fast x-ray Fluorescence Mapping with an x-ray microprobe

Continuously scan a pair of Motor
(at ∼100 µm/sec), triggering a de-
tector at 100 Hz.

Scan and Motor Records have
marginal support for this.

Using Newport XPS controller
(with Python!) to define trajec-
tories that triggers multi-element,
multi-channel XRF detector, and
AreaDetector to save data.

Simple Client GUI coordinates the
data collection.

Epics Channel Access for Python wxPython Applications M Newville / 16-Feb-2011

PyEpics3: Epics Channel Access for Python

Status:

near complete low-level interface to CA.

preemptive callbacks on by default.

thread support.

high-level PV class.

GUI support (only wxPython so far).

tested: linux-x86, linux-x86 64, darwin-x86, darwin-ppc, win32-x86
(base 3.14.11).

tested: Python 2.5, 2.6, 2.7, 3.1.

Easy installation, including Windows.

documented and some unit-testing (∼70% coverage of core)

Core routines (ca, dbr, PV, caget()/caput()): ∼2000 lines of code.

Devices, wxlib (Motor displays): ∼1800 lines of code.

http://github.com/newville/pyepics

Epics Channel Access for Python Conclusions M Newville / 16-Feb-2011

What’s Next

Acknowledgments: Bug reports, bug fixes, suggestions from Michael Abbott, Marco
Cammarata, Angus Gratton, Craig Haskins, Pete Jemian, Andrew Johnson, Janko Kolar,
Irina Kosheleva, Tim Mooney, Mark Rivers, Friedrich Schotte, Steve Wasserman, and
Glen Wright.

Development and Fixes is still fairly rapid.

Current version: 3.0.11. 3.0.12 will probably be next week.

Suggestions, contributions, collaborations welcome.

Epics Channel Access for Python Conclusions M Newville / 16-Feb-2011

	Motivation and History
	Why Python?
	Epics Channel Access for Python: A Brief History
	Channel Access for Python

	The ctypes module
	PyEpics3 Overview, Functional Interface
	PyEpics3 Overview

	ca module
	PV: object-oriented interface
	Alarms
	Web-based Data Archiver
	Epics Data Archiver -- Epics+Python+MySQL+Apache
	Epics Archiver: Plotting Historical Data

	Devices
	wxPython GUI Controls
	wxPython Applications
	Conclusions
	PyEpics3: Epics Channel Access for Python
	What's Next

