Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Intermediate python: Intro to classes

EEEEEEEEEEEE

Office of
Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
e

Outline of topics to be covered

What is an object

Example: defining a simple class
Objects vs. Modules

Aside: Iterators

ok w e

More features of objects
— inheritance
— polymorphism
— operator overloading

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

What is an object? OOP for the uninitiated.

Object-oriented programming is considered the “latest and greatest” in the computer
science game.

Objects combine data and the associated software for working with that data into a
single unit.

Objects have other advantages for code design, but we will cover that later.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 3

S

Objects are not as exotic as they seem: you have

already used python objects

= Example: when you created lists or strings, they automatically came with a set of

functions for use with them:

>>> a
(1, 2, 3, 5, 7, 11]

>>> s

>>> s.upper()
>>> a.append(13) '"THIS IS A STRING’

"this is a string"

>>> a.insert(0,17)

= Strings and lists also come with the plus (+) operator defined.

>>> [1,2,3] + [4,5,6]
[1I 2’ 3’ 4’ 5’ 6]

>>> s.capitalize() +
'This is a string. And another one.'

+ "And another one."

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Example: defining a simple class

class MyClass(object):
"Document the class here”

def init (self, initvar):
self.var = initvar

def MyRoutine(self, var):
''"'"Doc for MyRoutine here'
print 'self.var =',6self.var

>>> import democlass

>>> myobj = democlass.MyClass(1l)
>>> myobj.MyRoutine('?")
self.var = 1

>>> myobj.var

1

>>> myobj.var = 2

>>> myobj.var

2

Define an object (called MyClass)
— defines a new object type
— based on existing class “object”

Define a method (function): __init__is
called when the object is created,
parameter is saved as var

Define a method to do something:
MyRoutine. Notes:

= 15t param (self) points object
= varislocal and is not used

Now use the class

Create the object

= (Calls__init__. Note that selfis
taken from object name.

Calling the method

= Note: variables in objects can be
accessed externally (no public vs.
private members)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

>

Example: defining multiple instances

class MyClass(object):
"Document the class here”

def init (self, initvar):
self.var = initvar

def MyRoutine(self, var):
''"'"Doc for MyRoutine here'
print 'self.var =',6self.var

>>> import democlass

>>> myobjl = democlass.MyClass(1l)
>>> myobjl.MyRoutine('?"')
self.var = 1

>>> myobj2 = democlass.MyClass(2)
>>> myobj2.MyRoutine('?")
self.var = 2

>>> myobjl.var

1

>>> myobj2.var

2

Here we define two copies of our class
(myobjl and myobj2).

Note the data in each object is defined
independently.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

Objects (classes) vs. Modules

One can place both data and associated functions in a module or in a class. They do
sort of similar things. What is the difference?

var = None >>> import demomod as dm
def MyRoutine(): = CuloVERS e
print 'var =',var >>> dm.MyRoutine()
var = 3

>>> import democlass as dc
>>> ex = dc.MyClass(3)

>>> ex.var

3

>>> ex.var = 4

>>> ex.MyRoutine()
self.var = 4

class MyClass(object):
def init (self, initvar):
self.var = initvar

def MyRoutine(self):
print 'self.var =',6self.var

= You can only have one copy of a module in an application. Every module in your
application will access the same data items.

= One can define as many copies of an object as you might want.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

S

Python 2 vs 3 differences

= In Python 2.x one can define an object that is not based on another class:

class MyClass():
def init (self, initvar):
self.var = initvar

= |n Python 3+ a slightly different syntax can be used to omit the parent. However,
this code means something very different in Python 2.x (so don’t use it):

class MyClass:
def init (self, initvar):
self.var = initvar

= Python 3+ will not allow the syntax where nothing is in the parentheses (as at the
top). However, if one defines the parent class as object, the same syntax can be
used for both 2.x and 3+:

class MyClass(object):
def init (self, initvar):
self.var = initvar

Moral of story: always define classes using class <name>(object) or with a
parent class and you will not need to worry what version of Python you are using.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Reminder: dir shows the variables and routines
associated with a class

class MyClass(object): >>> import democlass as dc
def init (self, initvar): >>> exl = dc.MyClass (1)
self.var = initvar >>> dir(exl)
['MyRoutine', ' class ',
def MyRoutine(self): ' delattr ', ' dict ', ' doc ',
print 'self.var =',6self.var ' format ', ' getattribute ',
' hash ', ' init ', ' module ',
)) ' new_ ', ' reduce_ ',
Note that the functions we defined '~ reduce ex ', ' repr ',
(__init__and MyClass) are listed, plusthe | ' setattr ', ' sizeof ', ' str ',
variable (var) :__s??classhook__', ' weakref ‘',
var

= Python provides many other special | >>>
variables and functions (with names | >>> exl._ class__

beginning and ending with two <class 'democlass.MyClass'>
>>> exl. str_ ()

underscores[__JL\Ne\NHItaH<ab0Ln '<democlass.MyClass object at 0x37e210>'

a few of them in just a minute. >>> exl. module
'democlass’

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Detour: Introducing iterators

What is an iterator?

= When we want to work sequentially with a large amount of data, we may not want
to have to have to read/compute all of the data items before starting to process
them. Why?
— We may need to process the data items only until we reach a particular item
— The amount of memory needed to store all the items may be excessive

= Where might one want to use an iterator?
— readingin a large file

— computation of a large sequence of values, particularly if we will stop when some
condition is matched or each value is only used one time.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10
10/13/11

for loops use iterators (if defined)

In these examples, Python loop generates each value for the “for” loop, values are
generated only as they are used. This is the central concept in iterators

for myitem in range(10000): pass

fp = open(‘myfile’,’'r’")

for myline in fp: pass

mydict = {l:'a’, 2:'b’,...
for mykey in mydict: pass

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

11
10/13/11

Implementing an iterator

= |mplementing an iterator requires addition of two methods to a class: __iter __and
next:

= jter__is called with no arguments and returns an object that contains the next
function (usually the name of the class containing __iter__, but on occasion a new
class can be created for iteration)

= nextisalsois called with no arguments and either:
— returns the next value in the sequence or
— raises a Stoplteration exception when there are no more values to return.

For more on iterators see http://docs.python.orq/library/stdtypes.html#typeiter

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 2

\ |
Simple Iterator example 1y efines a simple class for a “list” of square

roots .

import math
class sqrtrange(object):
def init (self, stop): = jter__iscalled when the iteration is started
print "calling __ init "
self.stop = stop
def iter (self):

= init__is called when the object is created.

» next is called to obtain each item

toby$ python iter ex.py

print "calling iter " calling _ init
self.count = 0 calling _ iter
return self calling next

0.0

def next(self):
if self.count >= self.stop:
raise StopIteration

calling next
1.0
calling next

res = math.sqrt(self.count) 1.41421356237
print "calling next" cen
self.count += 1 (five iterations skipped)

return res S
calling next
) 2.82842712475
slist = sqrtrange(1000) calling next
for sq in slist: 3.0

print sq toby$

if sq >= 3: break

Note that even though we called sgrtrange (1000) the code only computed the square-
root values for the first 10 values in the sequence. If this had not been implemented as an
iterator, class would have to compute the square-root of all 1000 values.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 s

Adding a bit more class to our class

We can add more capability to our class
= Byadding __len__ then we can use len(object)

= Byadding _getitem__ we can index individual
items in the “list”

In this example we still only
compute square-root items as they
are needed but simulate a large list.

toby$ python

>>> import iter exl

>>> sl = iter ex.sqrtrange(10000)
>>> len(sl)

import math
class sqgrtrange(object):
def init (self, stop):
self.stop = stop
def iter (self):
self.count = 0
return self
def next(self):

if self.count >= self.stop: raise StopIteration

result = math.sqrt(self.count)
self.count += 1
return result
def len (self):
return self.stop
def getitem (self, 1i):
if i > self.stop:

raise IndexError, 'index out of range’

return math.sqrt (i)

10000

>>> sl[16]

4.0

>>> s1[500000]

IndexError: index out of range
>>>

pbnal Laboratory

14
10/13/11

