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Reiteration on classes/objects in Python

= Aclassis the way one defines the code used to create class exclass(object):
an objects. BESE

= Objects are then created by invoking the class exobjl = exclass()

= All functions (often called methods) in a class have as
their first argument the name of the object

(conventionally variable name “self” is used.)

class exclass(object):
— When the object is created, functions and variables are def Methodl(self):

created as children of the object pass

— When Methodl is invoked, variable sel £ will be set to
point to the object.

= Most classes will contain a __init__ function. That will | (1,45 e —
be called when the object is created. Parameters are def init (self,v):
optionally passed to __init__ when the class is invoked print ‘init with’,v
— Inexobjl. init  variable vis set to 100

exobjl = exclass(100)
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Reiteration on classes/objects in Python

= Variables used in a class can be local to a function or .
. class exclass(object):
can be part of the object. def init (self,v):

— varandv are local to __init__ they go away as soon as var = v
the routine exits self.var = v

def reset(self,v):
— self.var will persist as long as the object does self.var = v

def show(self):

= Nothing happens just from defining the class. When print self.var
we use it we create an object and define variables in
the class.
— exobjl.var has the value 100 initially exobjl = exclass(100)

— exobj2.var has the value 2

exobj2 = exclass(2)

— exobjl.varis then changed to 999 and then -1. exobjl.reset(999)
(exobj2.var is not changed.) Many would argue exobjl.var = -1
exclass.reset is a better way to to do this than to set the
variable directly
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Other properties of objects

The advantages of object-oriented programming are that:

= Data and associated software are grouped together
= One can reuse code easily

= One can write generic code that works with many different types of objects

In computer science lingo, objects have other important properties:

= Inheritance: One can create new objects based on previous. Functions and data
items add to what has already been defined.

=  Polymorphism: by defining a common set of functions, the same code can work on
different types of objects.

= Operator overloading: one can define the use of algebraic symbols with objects

we will look at them in more detail on subsequent slides.
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Inheritance: Classes automatically have functions
and variables from their parents

class MyClass(object):
def init (self, initvar):
self.var = initvar
def MyRoutine(self):
print 'self.var =',6self.var

class SubClass(MyClass):
def SuperRoutine(self,var):
print 'self.var =',6self.var
print 'passed var =',var

>>> import democlass2 as dc
>>> ex
>>> ex.MyRoutine()
self.var = 99

>>> ex.SuperRoutine(6)
self.var = 99

passed var = 6

= dc.SubClass(99)

= Note that we create a SubClass object, but MyClass.__init__ and
MyClass.MyRoutine are run from the parent, since they were not redefined in

SuperClass.

= SubClass also defines SuperRoutine, so we can use that too.

When we create a class based on a parent, the new class is called a subclass, but in fact
since it adds functionality — it is a superset of the original class

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

>

19



Inheritance: one can invoke overridden routines to

augment that code

class MyClass(object):
def init (self, initvar):
self.var = initvar
def MyRoutine(self):
print 'self.var =',6self.var

class SuperClass(MyClass):
def  init (self, initvar):
MyClass. init (self, initvar)
self.extravar = None
def MyRoutine(self):
MyClass.MyRoutine(self)
print 'self.extravar =',6self.extravar

>

>>> import democlass3 as dc
>>> ex = dc.SuperClass(1l)
>>> ex.MyRoutine()

self.var = 1
self.extravar =

None

Now SuperClass reuses the two routines in MyClass, but defines an extra variable and

implements it.

— note that you almost always want to call __init__ from the parent class if you override it

Something slightly unusual: we need to pass self in the calls to MyClass.<function>. This
is only done when overridden functions are called, since they are invoked by class

name, not by object name.
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Polymorphism: using a common interface

=  When different types of objects define methods (functions) that have the same
names and are called the same way, code can run the same on different types of

objects.

Examples:
= any class that defines function __len__ () can be used with len()

= Any object that defines iterators (__iter __ and next) or element indexing (__len___
and __ getitem__) can be used in a for loop, etc.
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Operator overloading: define the use of algebraic

operators (etc.)

class MyClass(object):
def init (self, initvar):
self.var = initvar
def add (self,varl):

print 'adding',self, 'and',6varl

The __add__ defines what happens
when an object is used with the
plus operator.

= Your code implements and returns
whatever “+” will do

= The first argument to + determines
the class to be used
— ex1+3is not the same as 3+ex1

>>> import democlass4 as d4

>>> exl = d4.MyClass(3)

>>> ex2 = d4.MyClass(4)

>>> exl

<democlass4.MyClass object at 0x37e410>
>>> ex2

<democlass4.MyClass object at 0x37e430>
>>> exl + ex2

adding <democlass4.MyClass object at
0x37e410> and <democlass4.MyClass object
at 0x37e430>

>>> exl + 3

adding <democlass4.MyClass object at
0x37e410> and 3

Note that real code should do a sanity check on the type for the 2" argument and raise a
TypeError exception when used with an inappropriate argument
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Other special functions in Python

Python has many special methods that are called when you use different types of
operations on objects. We have seen __getitem__, len_, iter_ ,and
__add__. Afew more examples are:

=  setitem__ is called when an indexed value in an object is set: obj[key] = a
=  repr__iscalled when an object is examined or when repr(obj) is called
= str__is called when an object is printed or when str(obj) is called (if __str__is

;)t defined, _repr__is used.)

__call__is called if the object is used as a function obj(args...)

For a comprehensive list see
http://docs.python.org/reference/datamodel.html#specialnames
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Summary: Classes vs Modules, which should | use?

=  Will you need only once “instance” of the object? If so consider using a module.

— Use of a class adds more complexity, since the object must be created and then the
name must be passed to all places where it will be used (a nuisance in callbacks)

— IMHO Classes take longer to write and use

=  OTOH, use of a class can offer several advantages:

— Dynamic memory: We can have as many copies of the class as needed; memory is freed
when the class is no longer referenced

— The prerequisite input for a class is usually clear from the __init__ arguments

— Classes allow for very sophisticated programming techniques that can sometime be very
efficient (for example, if sgrtlist were in a module we could not use iterators)

Either way, try to group routines that are used for a common purpose into a single .py
file. This makes it easier to reuse the code elsewhere.
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Homework

Previously module plotnotebook.py (
https://confluence.aps.anl.gcov/download/attachments/2523138/plotnotebook.py)

was provided to simplify use of matplotlib plotting with multiple tabbed windows.
When | originally wrote it, all the code was in classes, but later | rewrote it to take

some code out of modules .

Read the code.

=  What do the two classes do? What is the advantage of having that code in classes?

= What code is not contained in a class? When does that code get run? What are the
advantages of not having that code in a object?
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