Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Intermediate python: Intro to classes (continued)

EEEEEEEEEEEE

Office of
Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
e

Reiteration on classes/objects in Python

= Aclassis the way one defines the code used to create class exclass(object):
an objects. BESE

= Objects are then created by invoking the class exobjl = exclass()

= All functions (often called methods) in a class have as
their first argument the name of the object

(conventionally variable name “self” is used.)

class exclass(object):
— When the object is created, functions and variables are def Methodl(self):

created as children of the object pass

— When Methodl is invoked, variable sel £ will be set to
point to the object.

= Most classes will contain a __init__ function. That will | (1,45 e —
be called when the object is created. Parameters are def init (self,v):
optionally passed to __init__ when the class is invoked print ‘init with’,v
— Inexobjl. init variable vis set to 100

exobjl = exclass(100)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 16

Reiteration on classes/objects in Python

= Variables used in a class can be local to a function or .
. class exclass(object):
can be part of the object. def init (self,v):

— varandv are local to __init__ they go away as soon as var = v
the routine exits self.var = v

def reset(self,v):
— self.var will persist as long as the object does self.var = v

def show(self):

= Nothing happens just from defining the class. When print self.var
we use it we create an object and define variables in
the class.
— exobjl.var has the value 100 initially exobjl = exclass(100)

— exobj2.var has the value 2

exobj2 = exclass(2)

— exobjl.varis then changed to 999 and then -1. exobjl.reset(999)
(exobj2.var is not changed.) Many would argue exobjl.var = -1
exclass.reset is a better way to to do this than to set the
variable directly

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 17

>

Other properties of objects

The advantages of object-oriented programming are that:

= Data and associated software are grouped together
= One can reuse code easily

= One can write generic code that works with many different types of objects

In computer science lingo, objects have other important properties:

= Inheritance: One can create new objects based on previous. Functions and data
items add to what has already been defined.

= Polymorphism: by defining a common set of functions, the same code can work on
different types of objects.

= Operator overloading: one can define the use of algebraic symbols with objects

we will look at them in more detail on subsequent slides.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

18

Inheritance: Classes automatically have functions
and variables from their parents

class MyClass(object):
def init (self, initvar):
self.var = initvar
def MyRoutine(self):
print 'self.var =',6self.var

class SubClass(MyClass):
def SuperRoutine(self,var):
print 'self.var =',6self.var
print 'passed var =',var

>>> import democlass2 as dc
>>> ex
>>> ex.MyRoutine()
self.var = 99

>>> ex.SuperRoutine(6)
self.var = 99

passed var = 6

= dc.SubClass(99)

= Note that we create a SubClass object, but MyClass.__init__ and
MyClass.MyRoutine are run from the parent, since they were not redefined in

SuperClass.

= SubClass also defines SuperRoutine, so we can use that too.

When we create a class based on a parent, the new class is called a subclass, but in fact
since it adds functionality — it is a superset of the original class

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

>

19

Inheritance: one can invoke overridden routines to

augment that code

class MyClass(object):
def init (self, initvar):
self.var = initvar
def MyRoutine(self):
print 'self.var =',6self.var

class SuperClass(MyClass):
def init (self, initvar):
MyClass. init (self, initvar)
self.extravar = None
def MyRoutine(self):
MyClass.MyRoutine(self)
print 'self.extravar =',6self.extravar

>

>>> import democlass3 as dc
>>> ex = dc.SuperClass(1l)
>>> ex.MyRoutine()

self.var = 1
self.extravar =

None

Now SuperClass reuses the two routines in MyClass, but defines an extra variable and

implements it.

— note that you almost always want to call __init__ from the parent class if you override it

Something slightly unusual: we need to pass self in the calls to MyClass.<function>. This
is only done when overridden functions are called, since they are invoked by class

name, not by object name.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

20

Polymorphism: using a common interface

= When different types of objects define methods (functions) that have the same
names and are called the same way, code can run the same on different types of

objects.

Examples:
= any class that defines function __len__ () can be used with len()

= Any object that defines iterators (__iter __ and next) or element indexing (__len___
and __ getitem__) can be used in a for loop, etc.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 21

Operator overloading: define the use of algebraic

operators (etc.)

class MyClass(object):
def init (self, initvar):
self.var = initvar
def add (self,varl):

print 'adding',self, 'and',6varl

The __add__ defines what happens
when an object is used with the
plus operator.

= Your code implements and returns
whatever “+” will do

= The first argument to + determines
the class to be used
— ex1+3is not the same as 3+ex1

>>> import democlass4 as d4

>>> exl = d4.MyClass(3)

>>> ex2 = d4.MyClass(4)

>>> exl

<democlass4.MyClass object at 0x37e410>
>>> ex2

<democlass4.MyClass object at 0x37e430>
>>> exl + ex2

adding <democlass4.MyClass object at
0x37e410> and <democlass4.MyClass object
at 0x37e430>

>>> exl + 3

adding <democlass4.MyClass object at
0x37e410> and 3

Note that real code should do a sanity check on the type for the 2" argument and raise a
TypeError exception when used with an inappropriate argument

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

>

22

Other special functions in Python

Python has many special methods that are called when you use different types of
operations on objects. We have seen __getitem__, len_, iter_ ,and
__add__. Afew more examples are:

= setitem__ is called when an indexed value in an object is set: obj[key] = a
= repr__iscalled when an object is examined or when repr(obj) is called
= str__is called when an object is printed or when str(obj) is called (if __str__is

;)t defined, _repr__is used.)

__call__is called if the object is used as a function obj(args...)

For a comprehensive list see
http://docs.python.org/reference/datamodel.html#specialnames

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 23

\
Summary: Classes vs Modules, which should | use?

= Will you need only once “instance” of the object? If so consider using a module.

— Use of a class adds more complexity, since the object must be created and then the
name must be passed to all places where it will be used (a nuisance in callbacks)

— IMHO Classes take longer to write and use

= OTOH, use of a class can offer several advantages:

— Dynamic memory: We can have as many copies of the class as needed; memory is freed
when the class is no longer referenced

— The prerequisite input for a class is usually clear from the __init__ arguments

— Classes allow for very sophisticated programming techniques that can sometime be very
efficient (for example, if sgrtlist were in a module we could not use iterators)

Either way, try to group routines that are used for a common purpose into a single .py
file. This makes it easier to reuse the code elsewhere.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
24

>

S

Homework

Previously module plotnotebook.py (
https://confluence.aps.anl.gcov/download/attachments/2523138/plotnotebook.py)

was provided to simplify use of matplotlib plotting with multiple tabbed windows.
When | originally wrote it, all the code was in classes, but later | rewrote it to take

some code out of modules .

Read the code.

= What do the two classes do? What is the advantage of having that code in classes?

= What code is not contained in a class? When does that code get run? What are the
advantages of not having that code in a object?

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

25

