Arg °

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

3. Basic Python: assignments and expressions

e omer
@ENERGY 2

The Advanced Science User for the US. Department Science by Laboratory

Assignment

= Avalue is associated with a variable using the “=" sign

— A="“thisis a string”

- A=11

- A=1
It is better to think of the = operation as creating a label that references a value.
(For C programmers this is the equivalent to creating a pointer to a variable)

= Python allows operators to be combined with assignment, called augmented
assignment, for example:
A+=1
— This adds 1 to A (produces an error if A is not defined)

other commonly used augmented assignment combinations include:
- *=,-=,|=(0r), &= (And)

Science u. Laboratory

6’ — 5/11/11

Outline of topics to be covered

1. Assignment statements
— Assignment to a tuple
— Equals for complex data types
— Unassignment
2. Expressions
Comparisons
4. Misc. rules for coding: Comments & continuations

Q fence v aboraton
: (& sci Laboratory ,
Ly —— 5/11/11

Python Course Handouts - Brian Toby

Assignment to a tuple of variables

= Equals can be used to “break up” a tuple or list

>>> (a,b,c) = (2,4,(6,8))
>>> a

>>> b

>>> ¢
(6, 8)

= Note that frequently this is coded without the parenthesis

>>> a,b,c = [2,4,(6,8)]

= The lengths of the tuples, etc. must match

>>> a,b,c,d = [2,4,(6,8)]
ValueError: need more than 3 values to unpack

Science u. Laboratory

6’ — 5/11/11

5/11/11

. ___
5/11/11

Equals creates a pointer to an object but not a new
copy of the object

Something tricky: Equals does not compute! (Well it
does, but does not do what you think it should.)

>>>B=A
= id() shows us the memory location for >>>id(A)
each variable. Note they are the same.
3657936
>>>id(B)
3657936
= If we make a change to A, then B >>> B[1]
changes as well, since they both refer to 3.1415899999999999
the same list ’
>>>A[1]=3.0
. . . >>> B[1]
= Itis possible to make a copy of an object; 30
a slice creates a a new copy: .
B = A[:]
The Advanced Poton Source s anOffice of Scince User The scua U5 e aborstory
o ° o s/11/11
. |
This is not a problem with simpler data types The same thing happens with compound objects
Simpler data types create constants. Constants, as sl Z = (1,2)
well as tuples, strings and other immutable objects = Here we create ¢ as a tuple containing a tuple (a) and :i 5 - Ei’ﬁi
cannot be changed in place. a list (b) >>> ¢ '
>>>C=3.14159 — Thus cis a label referencing the tuple; the tuple itself ii' bf;ifég ¢+ 41)
In the example here, C and D initially both point to >>>D=C °°fma'"5 rjfsrencezt;twshobjzct;(one is also >>> ¢
the same float. >>>D referenced by aand the other by b) (1, 2), 13, 991)
3.1415899999999999 o e T
However when the 2 (now integer) value is 555 C=3 = The list inside the tuple can be changed, asb[1] orc -
. . R [11[1].If wechange either, both b & c change. [3,-1]
assigned to C, the variable now points to the new >s>D e
Iocatlon.'T'hls does not change D since it still pointing 3.1415899999999999 o (1, 2), [3, -1])
to the original value. = Note that assigning a new value to b does not change
c >>> b = 'test'
>>> ¢
(1, 2), (3, -11)
The sconcs US. Department of aborstory The sconcs U Depariment of aborstory
) s/11/11 7) s/1/11

Python Course Handouts - Brian Toby

® This means that when you use equals you are just adding a new label to the same object

= Here we create an object (a list) that is
pointed to by variable A and B

>>> cvar = complex(0,1)
>>> A =1, 3.14159, 'pi', ['a",'list'], cvar]

Be warned!

This process by which equals creates pointers to objects is one of the most confusing
parts of Python.

= There are good reason why Python copies pointers to objects rather than
contents:
— Saves space
— Faster
— Sometimes very convenient

= However, this is also one of the major sources for errors in Python code!

If you find that objects are changing their values unexpectedly, it is probably because
they are referenced in more than one place — be careful when nesting complex
data items and consider using copy, indexing or slicing during assignments.

The Science. Us. Dep Laboratory

5/11/11

Expressions

= Expressions are formed using operators (+, **) or functions [pow()] and constants
or variables:
- A=2+2
- B=varl *var2
— {2:2**10, 3: pow(3,10), }
— 3*“Spam”
= Expressions can be used just about anywhere a value of the appropriate type is
used

>>> { 2: 2**10, 3: pow(3,10), }
{2: 1024, 3: 59049}

>>> print 3*'Spam '

Spam Spam Spam

>>>

= You will see a lot more expressions as we learn more Python functionality, but see
http://software-carpentry.org/4 0/python/basics/ if you are impatient.

The Science U, Department of Laboratory

5/11/11

Python Course Handouts - Brian Toby

Unassignment

Usually one allows Python to clean up unused variables automatically when they
are no-longer needed. When we discuss functions, we will see that local variables
are created as needed and when they are no longer needed, the memory is
reclaimed.

However, if one wants to remove a variable, the del statement can be used:

A=[1,23]
del A

Note that del is better thought of as “forget” than “delete” as it will not necessarily
reclaim space

A=[1,23]

B=A

del A

— In this case the del statement does not release the memory associated with the list
because B still refers to it. However, if B is also deleted and not referenced elsewhere,
Python will then release the memory for reuse.

The Science. Us. Dep Laboratory

5/11/11

Comparisons

Comparisons are logical expressions that have a result of True or False. (Note
capitalization). Comparisons are usually used for tests.

>>> true
NameError: name 'true' is not defined

= |n addition to the expected comparisons, <, <=, >, >=, ==, I= thereare
some special ones: in, not in, is, is not
— is/is not tests object identity (to be explained later)
— in/not in tests to see if an item is matched in a list (etc.)

Why? Because the last line is interpreted as
2 in [(2,3),4] isFalse (2, (3.5‘" [(2,3),41))

(2,3) in [(2,3),4] is True and 3 in [(2,3),4]

2,3 in [(2,3),4)] is (2,False) gets evaluated as False

That gives (2, False)

The Science U, Department of Laboratory

2 in [2,3,4) is True

5/11/11

5/11/11

. ___
5/11/11

. | . |
Combining comparisons Commenting code
Python has Boolean operators: not, and, or than can be used to combine There are two ways to insert comments into code
comparisons. = Anything beginning with a hash or pound character (#) is ignored, except inside a
string
= Advice: Use parentheses liberally to make sure you are testing what you want. # this is a comment
They don’t cost anything. if A == True: # N.B. not same as if A: for non-boolean
pass
A > B and C or A !=D S = “this string includes # hash” # comment
is the same as — Note the 2" hash (#) starts a comment but not the 15
(A > B and C) or (A !=D)
but is not the same as .

You can define character string on one or more lines that is not assigned to any
(A > B) and (C or A !=D) variable — called a docstring

‘this is a comment’

‘’’this is a

Multiline comment’’’

— docstrings are preferred to document routines and classes (see
http://www.python.org/dev/peps/pep-0257/)

Science. Us. Dep Laboratory

The Science. Us. Dep Laboratory The

s/11/11 B o s/11/11 “
| |
Continuing lines Homework
One can break up a command between grouping characters (), {}, [] with no extra = Whatis the result of:
actions. The Python interpreter knows the next line is part of the previous 1+2*3
command because the command is otherwise incomplete. = What will the value of B be after executing these three lines of code:
A= A =12,3,4)
1, 2, 3, B = (a,R)
) A[2]=5
A= = Rewrite this comparison in a simpler form:
1, a<4ora>i4
2,
3, = Which of these code continuations are valid?
]
A= { 1:1, 2:2, A= (
3:’should not happen’} 1
= Itis also possible to use backslashes to continue lines, but don’t do this, since one ;
can always use parenthesis)
The sconcs US. Department of aborstory The sconcs U Depariment of aborstory
s/11/11 ® o s/11/11 ©

Python Course Handouts - Brian Toby

