Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Using python: Interacting with EPICS

EEEEEEEEEEEE Ofﬁce of

u.s.
EN ERGY Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
.

Outline of topics to be covered

EPICS & beamline controls
Python & EPICS

The ca_util package
Accessing PVs in ca_util
Dealing with EPICS dropouts

o vk N e

Tips on developing beamline code

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

Controlling beamline equipment

= The APS (BCDA) standard is to control beamline equipment via EPICS. EPICS serves

to manage communication to beamline devices such as motors, scalers, MCAs,
temperature controllers, robots,...

= To then run instruments, we use a variety of methods for controlling EPICS:
— MEDM GUIs to communicate and view
— Spec scripts
— Python scripts...

= Python advantages:
— Fully featured programming language
— integrate GUI, graphics, database calls & perhaps high-level math

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 }

A bit about EPICS

= EPICS is a complex protocol but | will only talk about some simples aspects of it.
From a programming perspective, EPICS can be considered to be an array of
variables that can either be read or set. These variables provide access to the
instrument controls. Each variable is provided with a tag called a PV (process
variable) that identifies the EPICS controller (IOC == crate or brick) that manages
that connection.

— Communication with a PV is via a protocol called channel access (CA). Here we will
discuss a few basic elements within the CA protocol

" You can only communicate with PVs on I0Cs that are local to your subnet or that
are repeated by the PV gateway (normally, not a concern).

= Communication between the client computer and the I0C is via ethernet.

= Communication between the I0C and the device may be routed in many different
ways: VME, ethernet, RS-232, IEEE-488,...

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11

Python EPICS support packages

= There are several Python support packages for EPICS are in use at the APS. The
most widely used are ca_util and PyEpics

= ca_util:
— found on all XSD beamlines via APSshare
— supported by BCDA
— not likely to be updated past Python 2.5

= PyEpics (http://cars9.uchicago.edu/software/python/pyepics3/):

— from Matt Newville (CARS), also see talk at

https://confluence.aps.anl.gov/download/attachments/2523138/PyEpics.pdf?
version=1&modificationDate=1305235539000.

— this is not yet supported by BCDA, but this seems likely to happen

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

Ways to interact with EPICS in python

= In this presentation | will cover communicating with EPICS using three very simple
EPICS communication methods:

— caget: reads a PV, returning a value or set of values
— caputw: sends a value to a PV, waiting for the value to be processed
— caput: sends a value to a PV, returns immediately (no wait)

= There are more sophisticated types of EPICS communication:
— monitor: writes a message or calls a routine every time a PV changes
— alarms: respond to an out-of-range PV
— much more

= | have found that caget, caput and caputw was all that | needed to implement the
11-BM automation and is all that | will cover here

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

What package should you use?

If you will need more than caput, & caget[w], | recommend that you work in PyEpics
right away; be prepared for the “joy” of being the “first on the block”

= |f you can work with only caput, & caget[w, | would suggest you use the BCDA
supported ca_util package.

Code written using simple calls to ca_util.caput, ca_util.caget & ca_util.caputw can be
eventually be transferred over to use of PyEpics pretty easily (possibly by changing
only the import ca util line).

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

Accessing the ca_util package

» The ca_util package must be accessed from /APSshare/bin/python

sllbmwork% /APSshare/bin/python

Python 2.5.2 (r252:60911, Jan 28 2009, 15:33:22)
[GCC 4.1.2 20070626 (Red Hat 4.1.2-13)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import ca_ util
>>>

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

Possible setup problems in accessing the ca_util
package

= |fyou get an error like this on importing ca_util:

sllbmsrvl:~ toby$ /APSshare/bin/python

Python 2.5.2 (r252:60911, Jan 28 2009, 15:33:22)

[GCC 4.1.2 20070626 (Red Hat 4.1.2-13)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
>>> import ca util

warning: Not importing directory 'new': missing _ init .py

>>>

= The problem is likely to be some out-of-date environment variables that interfere
with ca_util in Python:

sllbmwork% env | grep -i python
PYTHONSTARTUP=/APSshare/epics/startup/2007 07 31/pythonConfig.py
PYTHONPATH=/APSshare/epics/extensions 2007 07 31/lang/python:/APSshare/
epics/extensions 2007 07 31/1lib/linux-x86-fcé6

= | see this on some accounts at 11-BM (probably due to settings in the .cshrc/.login
file)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 °

Work-around for ca_util package load problems

Here is how to invoke Python if you have the previous problem

= bash:

sllbmsrvl:~ toby$ export PYTHONPATH=

sllbmsrvl:~ toby$ export PYTHONSTARTUP=

sllbmsrvl:~ toby$ /APSshare/bin/python

Python 2.5.2 (r252:60911, Jan 28 2009, 15:33:22)

[GCC 4.1.2 20070626 (Red Hat 4.1.2-13)] on linux?2

Type "help", "copyright", "credits" or "license" for more information.
>>> import ca util

>>>

= csh/tcsh

sllbmsrv1l% unsetenv PYTHONPATH

sllbmsrv1l% unsetenv PYTHONSTARTUP

sllbmsrvl% /APSshare/bin/python

Python 2.5.2 (r252:60911, Jan 28 2009, 15:33:22)

[GCC 4.1.2 20070626 (Red Hat 4.1.2-13)] on linux?2

Type "help", "copyright", "credits" or "license" for more information.
>>> import ca util

>>>

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 10

Expanding the ca_util buffer size

= |f you will transfer very long sets of values between Python and EPICS, then the
default channel access buffer size may be too small. This can be increased by
setting the EPICS CA MAX ARRAY BYTES environment variable to the
number of bytes to be transferred (e.g. 8 times the number of doubles) plus a bit
extra (~50 bytes).

— example: on 11-BM the Struck scaler may return >100,000 bytes

= tcsh/csh:
setenv EPICS CA MAX ARRAY BYTES 1280008

= bash

export EPICS CA MAX ARRAY BYTES=1280008

This needs to be done before python is started. It can be done from inside python, but
only before importing ca_util.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 1

S

Reading a PV

"= ReadingaPViseasy:callca util.caget (PV) where PV is a string containing
the name of the PV

>>> import ca util
>>> ca util.caget("llbmb:m28.RBV")

94.400000000000006
>>> ca util.caget("llbmb:CS:AlarmCode.SVAL")

'"End phase complete’

>>> a = ca util.caget("llbmb:3820:mcal2")
>>> len(a)

30000

= Note that the type that is returned depends on the PV

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

12

Setting a PV

" TosetaPVone calls caput or caputw: ca util.caput(PV,val)

orca_util.caputw(PV,val)

— The difference is that caput returns immediately while caputw returns after the
change has taken effect.

= Example: the code below moves a motor, but if wait is True, the python script
pauses until the motor reaches the position (when caputw returns).

Drive the Diffractometer 2-theta axis to a preset position
wait = False: the motor starts moving but execution continues
def DrivellBM2theta(position,wait):
if config.debug: print "Drive 11-BM to %$f Two-theta" % position
if wait:
ca util.caputw("1llbmb:m28.VAL",position)
else:
ca util.caput("1llbmb:m28.VAL",position)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11

Warning: caput and caget do not always work

= The caput[w] channel access methods do not check that the message you are
sending actually arrives to the intended interface. Also, both caput and caget can
sometimes timeout or otherwise fail.
— The access may not go through due to a network collision or problem
— The EPICS controller may get the message, but the attached device may fail to respond

= When you write a script, you need to consider that a channel access command
may fail:
— It may generate an exception
— It may run normally, but fail to do what you wanted

= For scripts where damage could occur if things are not done in the right sequence
or that will run unattended (and should not fail at 2 am), write code defensively --
assuming that you may need to catch an exception and/or check that the action
you intended actually happened.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

s) 5/26/11 1

S5

Defensive coding

= Hereis an example of some code | use for opening the filter-box shutter

open the shutter: loop until it is actually open
for i in range(10):
try:
if (ca util.caget('llbmb:xias:Status3') == 1 and
ca util.caget('llbmb:xias:Status4') != 1): return False
ca util.caputw("llbmb:xias:openShutter.PROC", 1)
gui.Sleep(l.5) # wait for update

except:
print "ignoring exception in SetllBMShutter open”

gui.Sleep(0.1)
gui.LogllBMmessage("Unable to open shutter after %d attempts" % i)
return True

— This code will ignore up to 10 exceptions before giving up
— It checks status bits to make sure the two blades are open
— If not, it sends an open command, waits and then tests again

Note that | tend to use a convention where routines return True in case of error so

that | can code like this
if DoSomething(): ErrorLogger (“message”)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

15

Waiting for something to happen

= Much of instrument control code is waiting for something to happen.

= (One can use callbacks —these are routines that are called when an EPICS event
happens. This can provide very fast response, but is potentially complex.

= Unless | need a response in less than 0.1 sec, my preference is to have a loop that
checks a PV and then waits for some period, using the time.sleep () function.

— GUI programming note: during a time.sleep delay, the wxPython event loop cannot
respond, so one wants to call wx.Yield() to allow for screen updates and button events
to occur, etc.

— luse this sleep function in GUI code (config.WaitTick is 0.1 sec):

perform a sleep command, but also do periodic screen updates
def Sleep(seconds):
wait = 0
while wait <= seconds:
time.sleep(config.WaitTick)
wait += config.WaitTick
wx.Yield()
return

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 1o

S5

Alignment programs

| typically drive alignment scans point-by-point in python (rather than scan a fixed

range) so that | can end the scan as soon as | am well past the peak or so that |

don’t stop early if | am close to the peak.

= Qutline of my peak finding code:

* Support routines:

moveScanLoc -- moves to next location;
appends location to X array

doCount — starts a counter, waits for it to
finish & appends intensity to Y

checkPeak — looks at Y values and
determines if a peak has been found;
or if the scan range should be
restarted earlier

There is a need for some generic multiaxis
peak-finding routines that do sparse
“hunts” and then reduce step sizes as they
get close to the peak.

scanrange = ..
repeat = True
while repeat:
X = 1]
Y =[]
while True:
if moveScanLoc(X,scanrange):
print ‘no peak in range’
raise NoPeakError,”out of range”

doCount (Y)
stat = checkPeak(X,Y,scanrange)
if stat == ‘done’:
repeat = False
break
elif stat == “restart”:
scanrange = ..
break

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

17
5/26/11

S

More on PV names

= So how do you know what PVs to use?

— in most cases you should first perform the action you want to place in a script from the
MEDM interface.

— Asyou do this, keep notes on what you do

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

18

S

Getting PV names from MEDM

= |f you press the middle mouse button on a button or value, MEDM will show the
name of the associated widget

— If you hold the button down and move to a X11 program, you can sometimes paste the
PV name. (Alternately look for nameCapture)

WEBS
H ¥
40,000 2 .000

Closed

A Shutter

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

19

Information about PVs

= aright mouse click in MEDM provides a menu

. IIIIIIIIIIIIIIIII‘

A Shutte

= Most useful is PV Info, which provides details on a PV

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
‘_ - 20

- 5/26/11
AN

Programming motors

Clibmbim23)
degrees

90, 00000

Note that motors have many associated PVs 90 00000

— The base name for this motor is shown in blue . 0, 10000 .
Calibilse Set

(11bmb:m28)

" For motor position there are two important PVs:

<I0C>:<motor>.VAL Set (caput) this to specify where
the motor should drive

<l0C>:<motor>.RBV Read (caget) this to see where
the motor is actually located o
— Note that a change tells you that the motor driver 90, 00000

received a message from the 10C, but not that the 90 00000
motor moved if it is stalled or turned off.

— More shows many more PVs, for example motor
limits

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office o

Fa 5/26/11

Now use the PVs

= Here are the routines | use to interface with the diffractometer 2theta motor. Note
that | take my chances on reading the PV (with respect to getting the position) and
that due to the way data collection is done on 11-BM, a skipped drive will only
slow down the instrument, so | can safely ignore an exception.

read the Diffractometer 2-theta position
def GetllBM2theta():
return ca util.caget("llbmb:m28.RBV")

Drive the Diffractometer 2-theta axis to a preset position

set wait to True if the routine should sleep until the position is reached
wait = False: the motor starts moving but execution continues

def DrivellBM2theta(position,wait):

try:
if config.debug: print "Drive 11-BM to %f Two-theta" % position
if wait:
ca util.caputw("1llbmb:m28.VAL",position)
else:

ca util.caput("1llbmb:m28.VAL" ,position)
except: print "ignore exception in DrivellBM2theta”

a Y 5/26/11

22

More complex systems may requir«
interacting with many PVs

=

11bmbRSCoper.adl (=1
BESSRC-CAT Sample Changer Uperations
11bmbRSC ¢

VERSION: R2-0-0

- Dismount sample

Exchange samples 21

Samele 2 Mounted sample ID:

E-stop ACT
P Sample

Process

Chtrl

Mode

RHSS

Power

Finger
Light
Door

ANLOAARZ2397
COMMAND PROGRESS E-STOP CONTROL HDDE CONTROL

| [t eintensnce
Dperatxon
STARTUP SEQUENCE | SHUTDOWN SERUENCE

lobot 1n error state

Check sample ID | (

| STATE 13

PV Info

I PY Information
Ob ject: Text Entry
Wed May 11 10352:46 CDT 2011

11ibmbRSCirviaimntyval

DESC: Mount sample value

RTYP$ longout

TYPE$ DBF_LONG

COUNT: 1

ACCESS: RW

I0C: ioclibmbrsc,xor,aps,anl,goviSo6d

PV Info

I PY Information
Ob ject: Message Button
Wed May 11 10:33:44 CDT 2011

11bmbRSCirviatmntreg

DESC: Mount reguest

RTYP: ko

TYPE$ DBF_ENUM

COUNT: 1

ACCESS: RMW

I0C: ioclibmbrsc,xor,aps,anl,goviSocd
VALUE: Active

STAMP: Sun Apr 24, 2011 06332303,455
ALARM: HO

STATES: 2
STATE ©: Passive

Active

Close I Help I

S

Programming the robot

= Sample code (best inside a try block that loops until success)

tell robot the sample number to use
ca util.caputw("llbmbRSC:rvla:mntval",position)

trigger loading the sample
ca util.caputw("llbmbRSC:rvla:mntreqg",0)
ca util.caputw("llbmbRSC:rvla:mntreq",1)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

24

PV Info

. . T
Where possible, test other PVs to [PY Infarnaticn
. Nou ey 10 10749540 CDT 2014
e 1493
check that the action occurred. :
1'EETEEEEi::::iE::::g:=================
BESC: Bar code reading
' o RTYPE stringin
- 11bmbRSCoper.adl —a)(x]]| conts g e
ACCESS: RM
) C) - - ‘-" - - o ~ - = . 301 + + + + :
SESORC-CAT Sample Changer Uperaltions [skttt
VERSION: R2-0-0 Sanele 1 Samele 2 Hounted sample ID: | RSN S
O E-stop ACT O PV Info =B x]
Mount sample e
ample : E’
- oz I PY Information
- Dismount sample et Object: Rectangle
_ 1 Mode kWed Mau 11 10348329 CDT 2011
el s LUbrbRSC om0t ireg0Bthio?
] 13 15 Power DESC: SAMPLE MOUNTED
Finger ﬂggi 'f'nlaF_ENun
Light COUNT: 1
ACCESS: RM
Door . | I0C: ioclibmbrsc,xor,aps,anl,govi5064
11 STAMPS Wod May 11, 2041 10348329144
Check sample ID ANLOAAR2397 n e 148129,
COMMAND PROGRESS E-STOP CONTROL MODE CONTROL gg;gst o? -
0 15 Maintenance 3
. ¥ l_- Haintenance | STRTE 13 NO
il | TP [CLERR o
STARTUP SEQUENCE | SHUTDOWN SERUENCE
Robot 1n error state |
7
I~ .-

Close | Help |

Did a sample get loaded?

= This routine reads the status bit. The code can then check that a sample was
actually loaded when | asked for that

returns True if a sample is loaded, false otherwise
def CheckForLoadedllBMsample():
i=0
while i < 10:
i+=1
try:
if (ca util.caget("11lbmbRSC:ommOl:reg06:bi07") == 1):
return False
else:
return True
except:
print "exception in CheckForLoadedllBMsample"
gui.Sleep(0.1)
else:
gui.LogllBMmessage("Abort: CheckForLoadedllBMsample exceptions”)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

26

Complex sequences of PVs require attention for
error recovery

= The code to mount the sample (15t box) should not be be in the same try block as
the call to read the barcode (2" box).

— Why? because if the sample mount fails you want to repeat it, but if the barcode read
fails, you don’t want to repeat the sample mount command, if it already succeeded.
(There should be no problem in repeating any of the commands in the 1% box).

— N.B. my real code logs errors and aborts after a number of exceptions

while CheckForLoadedllBMsample():
try:
tell robot the sample number to use
ca util.caputw("1llbmbRSC:rvla:mntval",position)
trigger loading the sample
ca _util.caputw("llbmbRSC:rvla:mntreq",0)
ca util.caputw("llbmbRSC:rvla:mntreq",1)
except:
pass

while True:
try:
barcode = ca util.caget("1llbmbRSC:rvla:barcode”)
break
except:
pass

27

Do what | say not...

= Note that in all my examples, | have hard-coded PV names. This is not a good

thing. A better choice is to define PVs in a one place using a dict (perhapsin a
confiuration file).

define PVs
PV = {‘D2ThR’: "llbmb:m28.RBV”,
‘D2ThS’: "llbmb:m28.VAL”,

read the Diffractometer 2-theta position
def GetllBM2theta():

return ca util.caget(PV[‘D2ThR’])

def DrivellBM2theta(position,wait):
try:
if wait:
ca util.caputw(PV[‘D2ThS’],position)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

28

Other tips

= When developing EPICS control code, | frequently work with several open
windows:
1. MEDM window(s)

2. axterm window where | drag PV names (I may also use caput and caget from unix shell)
for tests

3. apython shell where | try out commands
an editor, where | copy commands that did what | want into a script

= Data collection codes really benefit from storage of “metadata” and event

logging.
— Consider hierarchical storage: NeXus (see http://trac.mcs.anl.gov/projects/nexpy/) or
HDF5 (see http://www.pytables.org or http://code.google.com/p/h5py/).

— Consider the built-in logging module (http://docs.python.org/library/logging.html).
— Consider database use (MySQL, etc.) as a way to keep collection protocols and results.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11 2

