Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

5. Basic Python: File I/O

EEEEEEEEEEEE Ofﬁce of

u.s.
EN ERGY Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
.

Outline of topics to be covered

Opening files

stdin and stdout
Writing to a file
Closing a file
Reading from a file

o vk N e

Formatting text

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11

Opening a file for input or output

To access a file one creates a file object using the built-in open routine:

fp = open(filename, mode)

= The filename is either a string or a variable containing a string with the name of
the file to be opened

= The mode is usually one of the following:

o)
-

— open the file for reading

— “w” —open the file for writing

— “a” —open the file for writing but append to the end

See http://docs.python.org/library/functions.html#open for all mode options

= Once created, a file object has many routines associated with it, including:
— close, flush, name, read, readline, readlines, seek, tell, write, writelines

— (see http://docs.python.org/library/stdtypes.html#bltin-file-objects for a description of
all file methods)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11 }

Standard in and out channels

= When running from a console window, input and output channels are already

defined in the sys module:
sys.stdin — allows input from the terminal [typically used via the built-in raw_input()]
sys.stdout — allows output to the screen

— Also defined:
sys.stderr — standard location for error output

= You do not need to use open() to access these, but do remember to import sys.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/17/11

Writing to a file

To write to a file, usually one calls the file object’s write routine:

= Note that this simply places the characters into the file. Newlines are not added
automatically. One must add the new-line character (“\n”) yourself where you

want lines to end.

fp = open(”“log.txt”,”a")
fp.write(msg)
fp.write(“\n")

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

Closing a file

A file channel can be closed by calling the close routine:
fp.close()

Note that a file channel is automatically closed if there is no variables that
reference the channel

in the example below, the file is automatically closed when writelog returns, since

variable fp is deleted and then the associated channel is closed when the associated
storage is reclaimed.

def writelog(msg):
fp = open(“log.txt”,”a")
fp.write(msqg)
fp.write(“\n")
return

In fact this example can be made even more compact (though perhaps more obscure):
def writelog(msg):

open(“log.txt”,”a"”).write(msg + “\n”)

Note, though that according to the Python tutorial (

http://docs.python.org/tutorial/errors.htmi#tpredefined-clean-up-actions) this sort

of code can result in a file staying open indefinitely. In a program that will have
hundreds of file opens, | would always use a .close()

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S5

5/17/11

Reading from a file

There are several ways to read from an open file in Python.
= The best way for most applications is to simply iterate over a file object:

>>> fp = open('/tmp/dirlist.txt','r")
>>> for line in fp:
- print line[:-1]
08£f5c4dc59689
22936
24395
24893

— Note that each line contains a new-line character (“\n”), which | don’t print by using line
[:-1].

— There is a routine, fp.xreadlines(), that does about the same thing. This was provided
before file objects could be directly iterated over. You may see xreadlines() but don’t
use it in new code. It may go away someday.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/17/11

Reading from a file (even simpler)

= The previous code can be made even simpler (and more Pythonic) by putting the
open directly into the for statement:

>>> for line in open('/tmp/dirlist.txt','r'):
print line[:-1]

08f5c4dc59689
22936
24395
24893

= How does this work?!?!
— The for statement opens the file, creating a file object
— It iterates over the file object, each time getting a new line

— Once the reading is complete, the file object is automatically deleted, since it is no
longer referenced anywhere. This closes the file.

= Advanced: better to use this using the new Python with command (see
http://docs.python.org/tutorial/errors.htmi#fpredefined-clean-up-actions) which
forces the close and clean-up.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11 8

S5

Reading from a file

= There are a number of other methods that you probably do not want to use to
read file.

— fp.read() will return a single string with the entire file’s contents. Alternately, use
fp.read(n) to read n bytes from the file starting at the current position.

e Use this only when you want to deal with the entire contents of a file at a time (text editor for
small files?). You probably don’t want to use fp.read() for most things.
— fp.readline() reads a line from the file and returns that line, including a new-line (“\n”).
A return of an empty string indicates an end of file.

— fp.readlines() (note extra s) reads all lines from the file and returns a list of lines. Fast
and easy for short files.

>>> for line in open('/tmp/dirlist.txt','r').readlines():
. print line[:-1]

08f5c4dc59689
22936
24395
24893

e For a large file this uses much more memory than simply iterating over the file object. Use of
readlines is largely there for historical reasons IMHO.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

Reading/Writing with column-structured files

Lots of data that scientists want to read comes in formats where values are separated
by white-space or commas. When you get to this, you should know that:

= The Python built-in package, csv, provides utilities for reading and writing comma-
separated-variable files. See http://docs.python.org/library/csv.html

Perhaps better,

= The numpy package provides routine genfromtxt() as an easy way to pull a table of
values out from a file.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html

= Also, numpy.savetxt() will save a table of data into a file.
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11 10

S5

Formatting values into strings

A fairly frequent need when programming is to make a nicely displayed version of
some data. This is most commonly done in Python 2.x with the % operator:

string = "This is my %d test of %dto%s" % (1,2,3)
This produces “This is my 1 test of 2to3”

The % operator depreciated in Python 3 (I doubt it will go away very soon), so |
suggest you don’t learn it or use it in new code.

The Python3 way to do this is

string = "This is my {0} test of {1l}to{2}".format(1l,2,3)

The .format routine (2.6+) is more powerful than %, but is not available in Python 2.5

(APSshare, alas!) so you may not want to use this yet either.
http://docs.python.org/release/3.0.1/whatsnew/2.6.html#pep-3101-advanced-string-formatting

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

How to format for both Python 2.5 and 3.x?

If you want very fine control over how numbers are displayed (for example the number of
decimal places in a float), you have no choice to select either .format or %, but...

When you are more flexible, this will work in all versions of Python:
string = "This is my "+str(1l)+" test of "+str(2)+"to"+str(3)

Note that str() and repr() can be called on any Python object to convert it to a character
string [they mapto __str__ () and __repr__ FWIW]. They do slightly different things in

some cases: >>> str(l.1l)
'1.1"
.) >>> repr(l.1)
str() is meant for comfortable human reading '1.1000000000000001"
>>>

repr() is intended to show more of Python internals, though often there is no difference
from str(). Use repr() for debugging and str() for users.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

12
5/17/11

Homework

= Write a short Python script to write a file named mystats.txt with your name,
office location and phone extension, each on a different line (or include other
random information you prefer.)

= Write another short script that reads that file (mystats.txt) and displays each line
something like this:

File mystats.txt contents are
Line 1: Brian Toby

Line 2: 401/B4196

Line 3: 2-5488

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

13
5/17/11

