Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Using python: Getting started with NumPy & SciPy

EEEEEEEEEEEE Ofﬁce of

u.s.
EN ERGY Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
.

S

Outline of topics to be covered

NumPy & SciPy: where to get info

Using NumPy & SciPy: in ipython vs. scripts
NumPy arrays

Linear Algebra in NumPy

vk w e

Very brief intro to SciPy

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

S5

NumPy and SciPy

Python has an excellent pair of packages for scientific computation:

= NumPy (http://numpy.scipy.org/) is the successor to several math packages that
each had different strengths. It defines a fundamental multi-dimensional array
data type, as well as array support methods. It also provides a library of linear
algebra and fast Fourier transform routines.

= SciPy is (http://www.scipy.org/) is built on top of NumPy and provides a very
extensive library of computational tools including: constants, statistics, image
processing, optimization and much more. NumPy is now part of SciPy.

The disadvantage of Python in general is speed. Computations (compared to C,
Fortran, etc.). NumPy and SciPy allows one line of Python to do computations on a
large set of numbers. These computations run as fast as (or likely faster) than any C
or Fortran you might write. This means that Python can be used for both easy and

fast mathematical computations.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

More info on NumPy & SciPy

= QOlder (now free) NumPy book: http://www.tramy.us/numpybook.pdf

= “Tentative NumPy Tutorial”: http://www.scipy.org/Tentative NumPy Tutorial

= SciPy Tutorial: http://docs.scipy.org/doc/scipy/reference/tutorial/
" |ncomplete NumPy User’s Guide: http://docs.scipy.org/doc/numpy/user/

= QOther stuff: There are many other useful documents to be found at
http://www.scipy.org/Additional Documentation?action=show including NumPy
for MATLAB users, references to lectures & tutorials of various flavors,...

Documentation: (download at http://docs.scipy.org/doc/)

= NumPy Reference Guide: http://docs.scipy.org/doc/numpy/reference/

= SciPy Reference Guide: http://docs.scipy.org/doc/scipy/reference/

F N " The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

& - 5/26/11

Accessing NumPy

= NumPy is not distributed as a Python built-in package (I have heard rumors that

this will change) and NumPy must be compiled to match the Python release where
it will be used.

— Easy way out: use a prepackaged distribution such as EPD or PythonXY
— Note that Macs ship with NumPy installed but not SciPy

= To access NumPy routines in a script, use

import numpy

or perhaps better, so one can type np.array(...) instead of numpy.array(...):

import numpy as np

= In scripts, | do not recommend use of

from numpy import array,..

or even worse from numpy import *

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

Interactive use of NumPy

= theipython shell is a good way to use numpy and matplotlib interactively, invoke
ipython as ipython —pylab (windows use pylab icon)

bht3:work toby$ ipython -pylab
Enthought Python Distribution -- http://code.enthought.com

Python 2.6.5 |EPD 6.2-2 (32-bit)| (r265:79063, May 28 2010, 15:13:03)
Type "copyright", "credits" or "license" for more information.

IPython 0.10 -- An enhanced Interactive Python.

? -> Introduction and overview of IPython's features.

$quickref -> Quick reference.

help -> Python's own help system.

object? -> Details about 'object'. ?object also works, ?? prints more.

Welcome to pylab, a matplotlib-based Python environment.
For more information, type 'help(pylab)'.

In [1]:

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11

S5

Package names in ipython -pylab

= jpython with pylab allows NumPy routines to be used with prefix of numpy, np or
no prefix:

In [1]: array([1l.1])
Out[l]: array([1.1])

In [2]: numpy.array([l.1])
Out[2]: array([1.1])

In [3]: np.array([1l.1])
Out[3]: array([1.1])

| suggest you use the numpy or np prefix until you know the numpy, scipy and pyplot
(matplotlib) packages well, as use of the prefix makes it easier to know what routines
come from where and makes it easier to copy code to a script.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

S5

Arrays in numpy

A numpy array is a fixed number of numerical entries, all of the same type

An array has a shape: this determines the number of indices that are used to index

the elements within the array. One dimension is a vector, two can be a matrix, but
higher dimensionality is possible.

A one-dimensional array can be created from a list or tuple. The shape variable
tells us the dimensionality.

>>> np.array([1,2,3,4])
array([1l, 2, 3, 4])

>>> np.array([1l,2,3,4]) .shape
(4,)

A two-dimensional array can be created from a nested list or tuple (or
combination):

>>> np.array([(1,2,),[3,41])
array([[1, 21,

[3, 411)
>>> np.array([[1,2,1,[3,4]1).shape
(2, 2)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

Changing dimensionality

= The reshape method can be used to distribute the elements of an array in the
desired level.
— reshape requires the number of elements to stay the same.

>>> a = np.array(range(8))
>>> g
array([0, 1, 2, 3, 4, 5, 6, 7])
>>> a.reshape(2,4)
array([[0, 1, 2, 3],

[4, 5, 6, 7]1])
>>> a.reshape(4,2)
array([[0, 1],

[2, 31,

[4, 51,

[6, 711)
>>> a.reshape(2,2,2)
array([[[0, 1],

[2, 311,

[[4, 51,
[6, 7111)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

S

Indexing elements

= Indexing requires a value for every dimension of the array

>>> a = np.array(range(8))
>>> g
array([o, 1, 2, 3, 4, 5, 6,
>>> a.reshape(2,4)
array([[0, 1, 2. 31,

[4, 5, 6, 7]1)
>>> a.reshape(4,2)
array([[0, 1],

(2, 21,

[4, 51,

[6, 711)
>>> a.reshape(2,2,2)
array([[[0, 11,

[2, 311,

L[4, 51,
[o, 7111)

>>>

>>>

>>>

>>>

al[l]

a.reshape(2,4)[1,2]

a.reshape(4,2)[2,1]

a.reshape(2,2,2)[1,0,0]

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

10

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Slicing arrays >>> b = a.reshape(4,2)
>>> b
array([[0, 1],
[2, 31,
[4, 51,
, 7
= Tuples and ranges can be used to access a sub-array L6, 711)
from an array. One can even make assignments to a
slice of an array
>>> b[:,1] >>> b[2:,1] >>> b[(1,3),1]
array([1, 3, 5, 7]) array([5, 71]) array([3, 7])
array([[0, 11, array([[0, 11, array([[0, 17,
(2, 31, [2, 31, [2, 3]
[4, 51, [4, 51, [4, 31,
[6, 71]) [6, 711) [6, 711)
>>> b[(1,3),1] = (-1,-2) >>> b[(1,3),1] = -1
>>> b >>> Db
array([[0, 1], array([[0, 1],
[2 ’ -1]I [2 ’ -1]I
[4, 51, [4, 51,
[6, -2]1]) [6, -111)

5/26/11

11

S5

Operations on arrays

>>> a = np.array([range(3)]*5).reshape(3,5)

>>> a

arraY([[Ol 1! 2! OI 1]!
[2I OI ll 2! O]I
[, 2, 0, 1, 2]1)

= Most sensible operations are defined on arrays. One can do element-by-element
operations or element to scalar operations:

Note that these
computations are
done using
compiled code and
run as quickly as
they would in any
other language!

>>> g + 4
array([[4,
[6,
[5,
>>> a * a
array([[O,
[4,
[1,
>>> g ==

Ul
-

(@)
-

N
-

51y
41,
611)

o B
N~ 0~
& Ol
N~ 0~
(G20e)}
N~ 0~

]‘l 4’ 0’ 1]’
0, 1, 4, 0],
4, 0, 1, 411)

array([[True, False, False, True, False],

[False, True, False, False, True],

[False, False, True, False, False]], dtype=bool)
>>> a == a*a
array([[True, True, False, True, True],

[False, True, True, False, True],

[True, False, True, True, False]], dtype=bool)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

12

S5

Indexing with logical arrays

>>> a = np.array([range(3)]*5).reshape(3,5)
>>> a
arraY([[Ol ll 2! OI l]l

[2I OI ll 2! O]I

[, 2, 0, 1, 2]1)

= Just as one can access array elements by slicing, one can use a logical array as well.

— The logical array must have dimensions that match the indexed array.

>>> a[a==0]

array([0, O, O,

>>> b = a.copy()

>>> b[b==0] = 3

>>> b

array([[3, 1, 2,
[2I 3’ 1’
[1 ’ 2 ’ 3 ’

>>> g

array([[0, 1, 2,
[2I OI ll
[1I 2’ OI

0,

01)

11,
31,
211)

11,
01,

211)

Selects elements that are zero

make a copy of the array

set elements in b that are equal to 0 to be 3

the now-changed b array

a is not changed since b is a copy, not a reference

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

13
5/26/11

S5

Linear Algebra

NumPy does lots of linear algebra easily:

" np.zeros([n,n]):createsanbyn matrixfilled by zeros (np.ones does the
same with unity)

" np.eye(n):createsan by nidentity matrix
— canalso be called as np.eye(n,m)

" multiplication: see np.dot(..), np.inner(..), np.cross(..) and
np.outer(...)

" np.inv(A): convertsthe inverse of square matrix A (also see np.solve(...)
which is faster when you want to solve y = Ax and don’t need A1)

Other utilities in NumPy:

" np.linspace(..): create arange of floats with a fixed step [also see
np.logspace()]

= Fourier transform: seenp.fft (), np.ifft()..

For examples, see http://www.scipy.org/Numpy Example List

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

14
5/26/11

Divide by zero, etc.

= Unlike in “normal”Python, one does not get an exception when a math argument
is out of range. Instead, NumPy sets the appropriate array element(s) to NaN, Inf,
or —Inf
— totestvalues, seenp.isnan() ornp.isinf ()

>>> np.eye(2,3)
array([[1., ©O0., 0.1,
[0., 1., 0.11)

>>> 10./np.eye(2,3)
array([[10., 1Inf, 1Inf],
[Inf, 10., 1Inf]])

>>> -10./np.eye(2,3)
array([[-10., -Inf, -Inf],
[-Inf, -10., -Inf]])

>>> np.sqrt(np.eye(2,3)-1)
array([[0., ©NaN, NaN],
[NaN, 0., NaNJ]])

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/26/11

S5

Speedy conditional processing

One never wants to loop (for or while) over an array, particularly if the array is large.
So how does one do conditional computations?

= use the np.where(<logical_array>, <arrayl>, <array2>). This will return <arrayl1>
elements where <logical_array> is True and <array2> elements where
<logical _array> is False.

>>> a

array([[0, 1, 2], This is not exactly the same as conditional

- [3, 4, 511) computation, in that one must evaluate every

array([[1., 0., 0.1, element in <array1> and <array2> before calling
[0., 1., 0.11) where, but in most cases this is much, much

faster than looping through to decide which
:zza;l(’ Ev[mfre(b::()) aéb; element should be computed (unless one does
[3. : 1. : 5.1 3) that in external C or Fortran code)

Most commonly np.where is called with an if statement and two expressions:
W2 = np.where ((d > 0),s-d,s+d)
where statements can even be nested

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/26/11

16

A really skimpy intro to SciPy

SciPy consists primarily of a number of sub-packages for various types of
computations. Note that you may well find useful things in odd places (Gaussian and
Lorentzian peaks shapes in scipy.stats). Documentation contains code examples.

= Clustering package (scipy.cluster) = Optimization and root finding

= Constants (scipy.constants) (scipy.optimize)

= Fourier transforms (scipy.fftpack) = Signal processing (scipy.signal)

= Integration and ODEs (scipy.integrate) = Sparse matrices (scipy.sparse)

= |nterpolation (scipy.interpolate) = Sparse linear algebra (scipy.sparse.linalg)
* |nput and output (scipy.io) = Spatial algorithms and data structures

= Linear algebra (scipy.linalg) (scipy.spatial)

= Distance computations

= Maximum entropy models _ -
(scipy.spatial.distance)

(scipy.maxentropy)

= Miscellaneous routines (scipy.misc) " Special functions (scipy.special)

- . . : = Statistical functions (scipy.stats)
= Multi-dimensional image processing
(scipy.ndimage) = C/C++integration (scipy.weave)

= Orthogonal distance regression (scipy.odr)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

s) 5/26/11 Y

S5

A short NumPy/SciPy example

Goal of this code:
= Convolute an even™ number of peak-shape functions, by
1. computing them,
2. multiplying their Fourier transforms and then
3. transforming them back
= The resulting values are normalized to make the max 1 and are then interpolated
onto an arbitrary grid

The code has been written in a general fashion, where the references the peak-shape
functions are passed in a list.

It should be noted while this code works, it turns out that the FFT even with a large
number of points, is much faster than the interpolation. The faster approach is to

compute the peak-shape functions on the desired grid.

e avalightlysdifferent £ade is- neededwith.ap.odd.numpar of fuNEHORStonal Laboratory

5/26/11

18

Part 1: Define a function to use

import numpy as np

import numpy.fft as ft # shortcut to np.fft
import scipy.stats as ss

import scipy.interpolate as itp

import plotnotebook as plot

def peakfunc(width, dists, scales, points):

"' 'Compute a convolution on a course grid, return a function

that interpolates it onto an arbitrary grid'''

X = np.linspace(-width, width, points) # compute coarse grid

z = np.empty([len(dists), points])

axl = plt.figure().gca()

for i, (scale, dist) in enumerate(zip(scales, dists)):
z[i] = dist(x,scale=scale) # compute the distribution on the grid
axl.plot(x,z[i], ' 'o-")

Z = ft.fft(z) # compute FFT on functions

P = ft.fftshift(ft.ifft(Z.prod(axis=0))).real # FFT product of FFTs

X = x+(x[1]-x[0])/2 # shift by a half point -- not sure why

return itp.interpld(x, P/P.max(), kind=1, # return interpolation fxn

bounds error=False, fill value=0)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/26/11 19

Part 2: test the function

if name == " main_ ":

dists = [ss.norm.pdf, ss.cauchy.pdf]

pkwids = [0.003, 0.0015]
w = 10.*max(pkwids)

func = peakfunc(w, dists, pkwids, 64)
X = np.linspace(-w, w, 64%*8)
ax2 = plt.figure().gca()
ax2.plot(x,func(x),'+"')
plt.show()
200 1.0 #ﬁi
0.8
150 F it% %
P
0.6} i T
P
100
{ H
0.4} % %
/ i
s0f i i
0.2}
-0.01 0.00 0.01 0.02 0.0 0'—%.03 —0.02 —0101 0.60 O.bl 0.02 0.03

—%.03 —0.02

T AUVAIILTU F1HIULUTE QUUILE 1D dll UIHILE Ul JUITIHILE UDCI Falllily UPSialcu 1ul

UIT U.o. vcpal i

ITHL UL LIISIEY UIHILT Ul JUITIHILE WY AIBUIIIC INauulidl Lauuidlul y

5/26/11

20

