Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

6. Basic Python: continuing after errors

EEEEEEEEEEEE Ofﬁce of

u.s.
EN ERGY Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
.

Outline of topics to be covered

Types of errors

Default error handling

Using try to treat error conditions
Triggering exceptions

Defining exceptions

o vk N e

Programming strategies related to exceptions & debugging

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11

Errors happen!

Errors fall into two broad categories:
= Syntax errors:

For I in list:
pass

— Thisis an error due to the uppercase F in For
— syntax errors are usually noted before the script tries to run

= Run-time errors:

— These are errors that happen in statements that are valid, but where the values in use
are out of range or of the incorrect type, etc.

— We have seen a few of these already

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11

Some errors we have seen so far

= These errors have shown up in previous examples

>>> int(complex(3,2))
TypeError: can't convert complex to int

>>> t = (1,2,3)
>>> t[2] = -3
TypeError: 'tuple' object does not support item assignment

>>> a,b,c,d = [2,4,(6,8)]
ValueError: need more than 3 values to unpack

>>> A = []
>>> A[2] = 17
IndexError: list assignment index out of range

>>> true
NameError: name 'true' is not defined

= Note that each error has a particular “Exception type” (TypeError, ValueError...)
associated with it

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

i 5/17/11 N

What happens when a Python script encounters an
error?

= Normally when an error is encountered when running a script, Python prints an
error message and exits.

= When Python is running from a GUI, and the error occurs in response to an event
(button press, timer, etc.) the routine that was called by the event is ended, but
the program continues

This is not always what you want to happen!

Python offers a way to set up your own code to deal with errors using the try and
except statements

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

s) 5/17/11 >

Reacting to errors:
An example from 11-BM beamline code

= Thisis in the main data collection loop

try:
errcode = RunllBMmailinSamples inner (sampletable, RunList)

except Exception, err:
msg = 'Error in RunllBMmailinSamples\n' + err
errinfo = traceback.format exception(sys.exc type,
sys.exc_value,
sys.exc_ traceback)

for line in errinfo: msg += line
gui.LogllBMmessage(msg)
SendShortEmail (config.CrashAlerts,msqg)

= |f any [uncaught] exception occurs while Runl1BMmailinSamples inner is

running a message is written to the log and an e-mail is generated. Data collection
stops

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/17/11

S5

Using try/except/finally/else

= |f the Condition is not specified, all exceptions are
caught. Likewise, if the Condition is specified as
Exception, all exceptions are also caught
(since all exceptions are based on Exception.)

" errmsg isan optional value to store an error
message

= Linesin the optional else section are run only if
there is no exception generated in the try section.
(Exceptions in the else clause are not caught).

»= Linesinthe optional £finally section are
always run, even if there is an uncaught exception
in the try section.

try:
<statement(s)>
except Conditionl,
<statement(s)>
except Condition2:
<statement(s)>
else:
<statement(s)>
finally:
<statement(s)>

errmsg:

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

Handling expected errors

= Very often one wants to have a program respond cleanly and continue when an
expected error happens. Do this by looking for a specific exception

try:
valuelist = [parmdict[var] for var in varlist]

except KeyError,err:
print 'Error: key was not found:
valuelist = []

+ err

= Note: Trapping all possible error classes, with
except:
or
except Exception:

and continuing is not a good idea, since you may try to continue after an error that
should stop the program. Worse, you will likely lose information that the Exception
even happened.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/17/11

Invoking exceptions in your code

= |tis often a good idea to have code you write create exceptions. Do this with the
raise command.

= Syntax:

raise ExceptionName, ‘error message’

The ExceptionName must be a defined Exception class such as (KeyError)
The ‘error message’string is not required but is a good idea

Note that you can always raise the base exception, Exception, but it is better to make
your own if no standard exception class fits...

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

Using try to raise an exception

= Sometimes one traps an Exception only to do something and throw a new
exception

try:

valuelist = [parmdict[var] for var in varlist]
except KeyError,err:

LogError(err)

raise MyException, 'Error: key was not found:

+ err

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

10

Defining New Exception Types (Error Codes)

= You likely will want your own error types. You do this by creating a new Exception
object. This is quite simple:

class MyError (Exception):
def init (self, value):
self.value = value # save the arg. to raise
def str (self):

return "mixed methphor problem:

+ str(self.value)

The name of the class defines the error type.
= Use that class with raise:

try:
raise MyError, 42
except MyError, err:
print 'Error:',err

= Note that the error delivered to except (err) is the return value from __str__

BHT3:work toby$ python except demo.py
Error: mixed methphor problem: 42

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11 1

Programming strategy: Why use exceptions?

= Why use an Exception in a routine rather than return?

— The advantage of an exception is that it can get you out of a sequence of routines rather
than having to return through each one. It then brings you right to the error handler.

= Suppose | have this code:

try:
dosomething()
except MyError, err:
ProcessError(err)

where dosomething() calls a chain of other routines dol(), do2(),... depending on
what is being done. If anyone of those routines raises a MyError Exception, | return
all the way out of the chain and end up running ProcessError — sort of like a
Fortran GOTO but in a structured and easy to follow fashion.

= Think of raise as “get me out here”. | use it frequently.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa Y 5/17/11 12

Handling unexpected errors

It is often good to trap both expected and unexpected errors with different handlers.

= Example: in my beamline code | always place EPICS communication code inside a
try/except block, since occasionally EPICS messages fail and when that happens |
want to retry them. However, | also want to be notified when a program fails for
an unexpected reason.

= | solve this by putting the main routine inside a try/except block that responds to
any uncaught error by sending an e-mail (or text message).

= The main routine calls many different low-level routines that will use try/except
blocks to cope with expected conditions. These routines will raise an exception
when they can’t resume.

" Inyour code you may be able to do this with a single try/except block with
multiple except clauses, but more likely you will need to effectively nest try/except
levels as | did.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

s) 5/17/11 B

Tracebacks

= When a serious error occurs, you will likely want to record as much as possible
about where the error occurred. By default, Python gives us a traceback that
shows the sequence of calls that lead to the error:

def junk(): BHT3:work toby$ python trace demol.py
return 0/0 Traceback (most recent call last):
File "trace demol.py", line 7, in <module>
def calljunk(): calljunk()
junk () File "trace demol.py", line 5, in calljunk
Junk()
calljunk() File "trace demol.py", line 2, in junk
return 0/0
ZeroDivisionError: integer division or modulo by zero

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Fa 5/17/11

Saving traceback information

= |f you want to do something with the

traceback information yourself, you can

either obtain it as a tuple or send it to a
open file using the built-in traceback
module

BHT3:work toby$ python trace demo2.py
BHT3:work toby$ cat error.log

Error caught @ 2011-04-28 15:47:52.882218

Traceback (most recent call last):

File "trace demo2.py", line 10, in <module>

calljunk()

File "trace demo2.py", line 7, in calljunk

junk ()

File "trace demo2.py", line 4, in junk
return 0/0

ZeroDivisionError:

e Adva ed Oto ource d e use a y operated 1o e U.5. Depa

import traceback
import datetime as dt
def junk():

return 0/0

def calljunk():
junk ()

try:
calljunk()
except ZeroDivisionError:
fp = open('error.log','a')
fp.write('Error caught @ ' +
str(dt.datetime.now()) +
‘\n\n")
traceback.print exc(file=fp)
fp.close()

integer division or modulo by zero

ergy O onal'Laboratory

15
5/17/11

S

Homework

Write a short script that divides 10.0 by each value in this list [10, 5, 0, “zero”]

— Ifthere is no error, print out the result

— When division by zero error occurs, print out “divide by zero error”

— When an error occurs due to dividing by a string, print out “you can not do that!”

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

5/17/11

16

