Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Intermediate python: GUI programming with WxPython, part 2

EEEEEEEEEEEE

Office of
Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
I

S

Outline of topics to be covered

Quick wxPython/GUI review
wxPython’s “unique” terminology
Structure of a wxPython App
Using sizers to arrange widgets

Examples of other widgets

A A A

Event handling

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

REVIEW: WXPYTHON

“ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11
[

Background on wxPython

= wxPython is cross-platform, based on C++ wxWidgets package. Widely used.
— Qt (PyQt & PySide) is a good alternate to consider

= There is a wxPython book and considerable web material

= GUIs are constructed from windows (called frames in wxPython) and widgets.

= GUI code must be event-driven, in response to user actions such as clicking with
the mouse

= The wxPython demo has lots of widgets to try out along with sample code

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11

>

Important Terminology used in wxPython

= Application — this refers to the program. wxPython requires a complex extra layer
of code that takes care of interactions with the OS — fortunately this is very simple
to invoke.

= Frame — this is the wxPython name for a window

= Modal vs. Non-Modal windows

— A modal window is one that “locks up” the application until it is closed, such as what
happens in most programs when you use “Save as”.

— A non-modal window is one that behaves independently of other windows open in the
same program (e.g. browser windows or document windows in Word.)

= Panel—a panelis an invisible widget that holds other objects. While not always
strictly necessary, always use at least one.

= Sizer —a way to collect and arrange widgets

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

WRITING A WXPYTHON APPLICATION

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

Structure of a typical WxPython program

A wx program will have at least five components:

1. Animport of wx

2. An application object
This is needed to invoke all the code needed to run wx “behind the scenes”

3. Atleast one frame object
4. Widgets placed in the frame to actually do something
5. Code finalize frame and widget display and to start the event loop

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 /

A Short Example WxPython program

import wx
Create the Application object 1{| app = wx.PySimpleApp() # create the App
Make a frame 2{| frm = wx.Frame(None) # create a frame
put something in the frame
txt = wx.StaticText(
frm,-1, 'An MT frame is boring')
frm.Show()
4{ app.MainLoop()
print “done”

B w N e

Widgets are placed in the frame
Finalize display and start the event loop 3{

Notes:

B 00 = The wx.StaticText creates a widget to display
An MT frame is boring some text (more on this later).

» The frame.Show call is needed so that we
actually see the frame.

= The program goes into the event loop when
app.MainLoop is called

= Statements placed after this are run only after
all frames are destroyed.

= When we start placing multiple items in a Frame

a wx.Panel is needed. This adds some unobvious
R ————— features, such as tab support to switch between
input fields.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 s

Two ways to create the application object

import wx
class mywxapp(wx.App):
You may see examples where an /,def OnInit(self):

app“cat—ion Object is created by frm = wx.Frame(None) # create frame

subclassing wx.App. There may be btn = wx.StaticText(
© PP Y frm,-1, 'An MT frame is boring')

advantages of working this way, but | frm.Show ()

don’t know of them. return True
app = mywxapp() # create the App

— Place any code to be run'when the app.MainLoop ()

application is created in Onlnit (not
__init_ because that is run before
wx is initialized.)

— Onlnit must return True isisad g B
app = wx.PySimpleApp() # create the App

frm = wx.Frame(None) # create a frame
The two examples on this page do # put something in the frame

. . nd txt = wx.StaticText(
exactly the same thing. | think the 2"%is frm,-1, 'An MT frame is boring')

easier to follow. frm.Show ()
app.MainLoop()

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 °

Two ways to create a Frame

It is very common to subclass creation

of wx.Frame objects, as is dorw»

right.

In the second case, below, the frame
is created by calling the wxPython
class directly.

The first parameter passed for
creation each widget is a reference to

its parent. Here the frame has no

import wx
class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel (self)
wx.StaticText (

pnl,-1, 'An MT frame is boring')

self.Show()

app = wx.PySimpleApp() # create the App
frm = mywxframe()
app.MainLoop()

parent (so None is used). N.B. the
panel is a child of the frame and the
StaticText is a child of the panel.

Again these two codes are equivalent.
In some cases, subclassing is required

to do this to access features of
Frames.

import wx

app = wx.PySimpleApp() # create the App
frm = wx.Frame(None) # create a frame
pnl = wx.Panel(frm)

wx.StaticText (

pnl,-1, 'An MT frame is boring')
frm.Show()
app.MainLoop()

From here forward, | will use the first style, with a frame subclass. Also, rather than
show the code for an entire app, | will show only that Frame subclass.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

>

10/13/11

10

ARRANGING WIDGETS

‘\ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

- 10/13/11
G

11

Placement of widgets

The code before does not work if | want to put two widgets into the panel, unless |
arrange how they will be arranged

class mywxframe(wx.Frame):
def init (self): Witldget #2
wx.Frame. init (self, None)
pnl = wx.Panel(self)
wx.StaticText (
pnl,-1, 'Widget #1')
wx.StaticText (
pnl,-1,"'... Widget #2')
self.Show() /

class mywxframe(wx.Frame): thﬁ
def init (self): Widget #1
wx.Frame. init (self, None) | ... Widget #2

pnl = wx.Panel(self)
wx.StaticText (
pnl.-1.'Widget #1',
pos=(0,0))
wxX.StaticText(
pnl.-1."'... Widget #2', A
pos=(0,20)
self.Snowy()

Note: Hardcoding widget positions, as |
' have done here is a really bad idea

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

S

Using Sizers to arrange widgets

The better way to deal with positioning widgets is to use a tool (called a sizer) that
determines how large each widget is an arranges each object in its own place.

= The simplest form of a sizer is a wx.BoxSizer. A BoxSizer is effectively a stack of
widgets. The stack can be horizontal (side-by-side) or vertical (top-to-bottom).

wxX.BoxSizer (wx.HORIZONTAL)

wx.BoxSizer (wx.VERTICAL)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

13

Previous code now with a sizer

class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)

wx.StaticText (
pnl,-1, 'Widget #1')
wx.StaticText (
pnl,-1,"...
self.Show()

Widget #2')

class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
sizer.Add(wx.StaticText (
pnl,-1, 'Widget #1'))
sizer.Add(wx.StaticText (
pnl,-1,'... Widget #2'))
self.Show()

Hi&gdg#ﬁ#z

Here we add lines to define the
sizer. Then the sizer is
associated with the panel. As
each widget is created, it is

, added to the sizer.

Widget #1
... Widget #2
/4

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

14
10/13/11

Vertical and horizontal sizers in more depth

Here we create a frame with a
panel and a single sizer and then
place a series of StaticText objects
in the sizer.

Associate the sizer with the
panel in the SetSizer call. — |

We add each StaticText widgets |

class mywxframe(wx.Frame):
def init (self,direction):
wx.Frame. init (self, None)

pnl = wx.Panel(self)
szr = wx.BoxSizer(direction)
””,,,arpnl.SetSizer(szr)

for t in ['A','B','wide', '2\nlines']:

txt wx.StaticText(pnl,-1,t)

———————____* szr.Add(txt, 0, wx.AML, 10)
szr.Fit(self)

self.Show()

to the sizer (more on this later).

Optionally, use Sizer.Fit to
instruct the frame to match the
sizer dimensions.

The StaticText widgets are still
children of the panel not the
sizer.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

frm = mywxframe(wx.VERTICAL)

B0,
A
806
B
A B wide 2
lines :
y wide
frm = mywxframe(wx.HORIZONTAL) 2
lines
A
T 15

10/13/11

>

Controlling widget placement within sizers

= The Sizer.Add function has four arguments that can be quite confusing

szr.Add(txt, 0, wx.ALL, 10)

wX.Sizer.Add(widget, expand, flags, border)

= widget is the name of the widget to be added to the sizer

= flag specifies if the space for the widget can be expanded (wx . EXPAND) and/or if a
border should be added and if so on which side(s) (wx .ALL, wx.LEFT,
wx.RIGHT, wx.TOP, and wx.BOTTOM). To combine options use bit-wise or (|):

e.g. wx.EXPAND| wx.LEFT | wx.RIGHT

= expand specifies the relative amount of space to be allocated if expanded. This must
be anint, souse 2 and 1, or 66 and 33, not 1 and 0.5 to specify that first (requires
wx . EXPAND)

= border specifies the number of pixels to be added on the selected border(s)

For a more comprehensive discussion see http://wiki.wxpython.org/UsingSizers

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

16
10/13/11

The previous code with different Sizer.Add options

szr.Add(txt, 0, wx.ALL, 10)
(10 extra points on all sides)

szr.Add(txt, 0, wx.EXPAND, 10)
(border value is ignored)

szr.Add(txt, 1, wx.EXPAND, 0)
(note frame has been given extra space)

szr.Add(txt, j, wx.EXPAND, 0)
(where j=1,2,3,4)

szr.Add(txt, i, wx.EXPAND|wx.LEFT, 10)
(using expand and a border)

‘ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
s \l_: Y

— 10/13/11
GEENNN————

Sizers within sizers

Sizers can be nested to create complex widget
arrangements

One can place any widget inside a sizer; this
includes another sizer

To the right is shown a schematic diagram
where a complex arrangement of objects has
been created from three levels of sizers:

= the blue sizer is at the highest level;
= three red sizers are inside the blue sizer and
= agreen sizer is inside one of the red sizers

The sizers alternate directions, vertical,

horizontal, vertical — this (or the reverse) is
common.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 18

10/13/11

Example code with nested sizers

class mywxframe(wx.Frame):
def init (self):

wx.Frame. init (self, None, size=(250,75))

pnl = wx.Panel (self)

blue = wx.BoxSizer (wx.VERTICAL)

pnl.SetSizer (blue)

for num,ex in enumerate((0,0,1), 1):
redsizer = redsiz(blue, pnl, num)

blue.Add(redsizer, ex, wx.EXPAND|wx.ALL)

blue.Fit(self)
self.Show()

Note that each sizer is in a separate
function. This is a good practice, as
it makes it easier to move sections
of the GUI around.

(I would normally use different
functions for each of the three
“red” sizers).

def redsiz(psizer, panel, num):
'"'"'contruct a 2nd level sizer.
Behaves differently by num'''

sizer = wx.BoxSizer (wx.HORIZONTAL) txt.SetBackgroundColour('gray"')
if num == 1: txt.SetForegroundColour('green')
lbls = ['A','B','C"] sizer.Add(txt, 0, wx.ALL, 10)
elif num == 2: return sizer
lpls = ['B','C','D"] 80060
greensizer = greensiz(sizer, panel) N
sizer.Add(greensizer, 0, wx.ALL, 0) A 8 C
else:
lbls = ['A','B','C','D','E"] i s C D
for t in 1lbls:
txt = wx.StaticText (panel,-1,t,style=wx.ALIGN CENTER)| M
txt.SetBackgroundColour('white')
txt.SetForegroundColour('red') 3]
sizer.Add(txt, 1, wx.ALL|wx.EXPAND, 10)
return sizer A B C D E/

def greensiz(psizer, panel):
"''contruct a 3rd level sizer'''
sizer = wx.BoxSizer (wx.VERTICAL)
for t in ['1','2"','3"]:
txt = wx.StaticText(panel,-1,t)

Notes on use of sizers

White & dark gray shows size of StaticText widgets. Light gray shows the

OO0 borders that have been added.

A B C = The red sizers are set to expand as needed, but extra (vertical) space goes
only to the bottom red sizer.
B 8 C D | = TheStaticText objects in the red sizers are set to expand, with extra
q (horizontal) space shared equally.
Note how the space is allocated when the window (frame) is dragged larger.
3]
class mywxframe(wx.Frame):
A B C D E .

/4 for num,ex in enumerate((0,0,1), 1):
T redsizer = redsiz(blue, pnl, num)
\M blue.Add(redsizer, ex, wx.EXPAND |wx.ALL)

A B C def redsiz(psizer, panel, num):
I B C D greensizer = greensiz(sizer, panel)
sizer.Add(greensizer, 0, wx.ALL, 0)
I txt = wx.StaticText(panel,-1,t,
style=wx.ALIGN CENTER)
I sizer.Add(txt, 1, wx.ALL|wx.EXPAND, 10)
A B C D E def greensiz(psizer, panel):

ed for the U.S. O

txt = wx.StaticText(panel,-1,t)
sizer.Add(txt, 0, wx.ALL, 10)

d AF

10/13/11

The StaticBoxSizer

red sizer #1
A B
red sizer #2
The StaticBoxSizer places a label around 1 s
the sizer (IMHO, it looks better in
Windows than on the Mac). P
g
Changed code:
1. add a bit of extra space between the ERIEEET L
sizers A B C

2. Sizer creation is two steps instead of

one.

#blue.Add(redsizer, ex, wx.EXPAND|wx.ALL, 0)
blue.Add(redsizer, ex, wx.EXPAND|wx.ALL, 5)

OO0

red sizer #1

A B C

red sizer #2

red sizer #3

A B C D E
/4
R —

sizer = wx.StaticBoxSizer(
wx.StaticBox(panel, -1,
wx.HORIZONTAL)

#sizer = wx.BoxSizer (wx.HORIZONTAL)

'red sizer #'+str(num)),

<\'\ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

.y —

I

21
10/13/11

Other types of sizers - GridSizer

The GridSizer creates a n by m table of equal-size cells. The height and width of every
cell is dictated by the widest cell and the tallest cell.

Cells must be added from left to right and then down. Thus, every cell must have
something in it.

class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)

panel = wx.Panel(self) M_n
sizer = wx.GridSizer(3,3) AAAAAA BBB C
panel.SetSizer(sizer)
for 1bl in ['AAAAAA','BBB','C', DDD EEE E
'DDD', 'EEE', 'F\nF', F
'G','H','I"']: G H I
txt = wx.StaticText(panel,-1,1bl) 4
txt.SetBackgroundColour('white') T

sizer.Add(txt, 0, wx.ALL, 2)
sizer.Fit(self)
self.Show()

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/13/11 2

Other types of sizers -- FlexGridSizer

= The FlexGridSizer creates a n by m table of cells. Similar to the GridSizer except
that rows and columns may have differing sizes.

— The height of each row is determined by the tallest cell in that row and
— the width of each column is dictated by the widest cell in that column.

class mywxframe(wx.Frame):

def init (self): oo O
wx.Frame. init (self, None)
panel = wx.Panel(self) AAAAAA BBB C
sizer = wx.FlexGridSizer(3,3) DDD EEE F
panel.SetSizer(sizer) F
for 1bl in ['AAAAAA','BBB','C’, G H Iy

'DDD', 'EEE', 'F\nF',
'G','H','I']:
txt = wx.StaticText(panel,-1,1bl)
txt.SetBackgroundColour('white')
sizer.Add(txt, 0, wx.ALL, 2)
sizer.Fit(self)
self.Show()

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 23

10/13/11

Other types of sizers - GridBagSizer

= The GridBagSizer allows for a widget to span rows or columns and allows items to
be placed in specific cells. See the Window Layout/GridBagSizer demo in the
wxPython demos (shown below).

YaTe GridBagsi

The wx.CridBagSizer is similar to the wx.FlexGridSizer except the items are explicitly positioned
in a virtual cell of the layout grid, and column or row spanning is allowed. For example, this
static text is positioned at (0,0) and it spans 7 columns.

|pos(1,0) | pos(1,1)

pos(2,0) pos(2,1)

pos(3,2), span(1,2)
this row and col are growable

pos(4,3), span(3,1)

pos(5,4)

pos(6,5)

pos(7,6)

(Move this to (3,6)) (Move this to (3,6))

(Hide this item -->) pos(12,4), size(150, -1 | <-- Show it again _

CODE EXAMPLES FOR SOME COMMON WIDGETS

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

25

S

Creating common widgets

Making widgets tends to be easy

wx.Button: creates a widget
intended to respond when
“clicked” on by a mouse. Usually
labeled with text, but a variation,
the wx.BitmapButton, is labeled
with a bitmap image.

wx.CheckBox: creates a widget
that can be selected or
unselected. An option is a 3-state
button that can be on, off or
other.

wx.RadioBox where only one

button in a group can be selected.

The harder part is responding to the use of the widgets — this code
does not do anything when any buttons are pressed — we will come

back to this later.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laborato

def init (self):

wx.Frame. 1init (self, None)
pnl = wx.Panel(self)

sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)

btn = wx.Button(pnl, -1,
"sample button")

sizer.Add(btn,0,wx.ALL,10)

cbx = wx.CheckBox(pnl, -1,

"select me or not")

sizer.Add(cbx,0,wx.ALL,10)

lbls = ['A','B','C"]

rbx = wx.RadioBox(pnl,-1, 'radio box',
choices=1bls)

sizer.Add(rbx,0,wx.ALL,10)

8006
(sample button)

i

sizer.Fit(self)
self.Show()

|| select me or not

radio box

@A OB OC

10 Y/

=

S

Creating common widgets

= wx.TextCtrl: creates a widget where
a user can enter text. May be single
line or multiline. Probably the most
widely used widget next to buttons.

= wx.Choice: offers a menu with a
fixed list of options. (Also see
wx.ComboBox.)

Again, this just creates the GUI elements, but does

not “wire them up”.

def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)

sizer.Add(wx.StaticText(pnl,-1,
'"Enter text here'))
bx = wx.TextCtrl(pnl, -1,
"initial text",
size=(100,-1))
sizer.Add(bx,0,wx.BOTTOM, 10)

lbls = ['A','B','C"]

rbx = wx.Choice(pnl, -1,
choices=1bls)

sizer.Add(rbx,0,wx.ALL,10)

sizer.Fit(self)
self.Show()

8006 8006
Enter text here Enter text here
initial text initial text

(A

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/13/11

) “E_

RESPONDING TO EVENTS

‘\ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

- 10/13/11
G

28

Invoking a callback routine

wxPython has many types of events. One “wires up” the application by connecting
“callback routines” (aka an event handler) to the events.

* The bind function for a widget is used
to connect a callback routine to an
event.

* Note that the callback routine is passed
one parameter, which contains
information about the event that
caused the routine to be invoked.

bht3:tutorial toby$ python wx9.py
Button pressed
Button pressed

B 00

(sample button)
/4

class mywxframe(wx.Frame):

def init (self):
wxX.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,

"eamnle button")

btn.Bind(wx.EVT_ BUTTON, self.OnClick)
sizer.Add(btn,u,wx.ALL,LlU)

sizer.Fit(self)
self.Show()

def OnClick(self, event):
print 'Button pressed’

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

10/13/11

29

