Argonne°

NATIONAL LABORATORY

Learning Python

Getting results for beamlines and scientific programming

Intermediate python: GUI programming with WxPython, part 3

EEEEEEEEEEEE

Office of
Science

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory
I

Outline of topics to be covered

Quick wxPython (Sizers/Widgets/widget id) review
Responding to events

Model-View-Controller

Designing event handlers

Validators

A A A

Multiple windows (modal & non-modal)

Note that code used in examples in this talk are posted in a file oct19Examples.zip on
the Python Interest Group (PIG) web page.
The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11

REVIEW OF WXPYTHON

‘\ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

- 10/19/11
[

Short wxPython sample application

Subclass wx.Frame

= Call wx.Frame n;c_\—»

i
= Create Panel as child of Frame (self)
= Create sizer & associate with panel
= Create widgets & add to sizer
= Size window to match widgets

= Set “show” flag on Frame

Create App —— |
Create Frame

Start event loop

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

imp
cla

app
frm

app

ort wx
ss mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl wx.Panel (self)
sizer wX.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
w wx.StaticText (
pnl,wx.ID ANY, 'Widget #1')
sizer.Add(w,0,wx.ALL,10)
w = wx.StaticText(
pnl,wx.ID ANY,'...
sizer.Add(w,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

Widget #2')

wx.PySimpleApp() # create the App
mywxframe ()
.MainLoop()

wx4.py

800 .

Widget #1

... Widget #2

/

10/19/11

We use Sizers to arrange widgets

wX.BoxSizer (wx.HORIZONTAL) wX.BoxSizer (wx.VERTICAL)
B.00
Sizers can be placed in sizers for more complex A B C
arrangements g @ E
2!
3|
A B C D E

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Scie_

10/19/11

Commonly used widgets oo

Making widgets tends to be easy (_sample button)

= wx.Button: creates a widget intended to
respond when “clicked” on by a mouse. Usually

|| select me or not

labeled with text, but a variation, the radio box
wx.BitmapButton, is labeled with a bitmap @A OB OC
image. /
T
= wx.CheckBox: creates a widget that can be
selected or unselected. An option is a 3-state Wx8.py
button that can be on, off or other.
= wx.RadioBox where only one button in a group
can be selected. 8006 800
= wx.TextCtrl: creates a widget where a user can E:::;It:::there ‘f:;?;ltte::there
enter text. May be single line or multiline.
Probably the most widely used widget next to m
A
buttons. :B /4 B 4
= wx.Choice: offers a menu with a fixed list of c

options. (Also see wx.ComboBox.) .
wx8a.py

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/19/11

>

Widget id’s

Every widget in a window (frame) must have a unique id code. Usually this is done by
setting the id parameter when a widget is created to be wx.ID ANY (whichis-1).
This is often the default. If wx.ID ANY is used, wxPython creates a unique id.

w = wx.StaticText(pnl,wx.ID ANY, 'Widget #1')

Most of the time one does not care about the id value. When you do need to know
the Id of a widget, it can be obtained using <widget>.GetID().

id = w.GetID()

One exception, (to be shown later) there are some commonly used widgets, such as
Exit in menus, Yes & No buttons in dialogs,... wx.Python defines standard Ids for these
and it is best to use them.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/19/11

RESPONDING TO EVENTS

Needed to “wire up” buttons, etc. to code

A . The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

O™ 10/19/11

Binding an event to widgets

class mywxframe(wx.Frame):

This is the preferred way to make a def _ init_ (self): .

- . .F . init , N
binding. It it uses a method of the wx.Frame.__init_(se one)

) pnl = wx.Panel(self)
widget (button) to connect to the sizer = wx.BoxSizer (wx.VERTICAL)
callback. pnl.SetSizer(sizer)

btn = wx.Button(pnl, -1,
"Sampic kbutton')

This routine referenced in the bind btn.Bind(wx.EVT_BUTTON, self.OnClick)
will be called when the event epAcsnrC ellaR:plunceora B apY)
(wx.EVT BUTTON) is generated sizer.Fit(self)
when a button is pressed. self.Show()

def OnClick(self, event):
| print 'Button pressed'’ wx9.py

bht3:tutorial toby$ python wx9.py
Button pressed
Button pressed

800

(sample button)
/4

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

Q 10/19/11 °

Other commonly used events

wx.EVT BUTTON button press
wx .EVT CHECKBOX i
wx.EVT COMBOBOX
wx.EVT SLIDER — called when the appropriate widget is operated
wx.EVT RADIOBOX
wx.EVT MENU
wx.EVT CLOSE __called when a frame (window) is closed/changed
wx.EVT_SIZE _
wx.EVT TEXT ENTER typingin a TextCtrl

)\

wx.EVT KILL FOCUS generated when a widget is entered or left
wx.EVT SET FOCUS

wx.EVT KEY UP when a keyboard key is released

wx.EVT MOUSEWHEEL

wxX.EVT LEFT DOWN when a mouse button is pressed or the mouse is moved

wx.EVT MOTION

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 10

Aside: The Model-View-Controller Design Paradigm

It is almost always a good idea to

write code in three separate sections: Client
The model: which contains the ‘ ‘
program’s data structures and (Co,lt,i,,er]
“domain logic” |

The view: which displays the Model
information in the Model to the user Applcato
The controller: this allows the user to i
interact and perhaps modify the

model

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 H

Model-View-Controller in Scientific Coding

= The Model usually corresponds to the experimental data, fitting parameters, and all the
computational code used with that data.

= The View will be the tables and graphics that are generated to allow the user to
visualize the contents of the Model

= The Controller will be the GUI

These should all be in separate classes and, preferably, separate modules.

Why?

1. You may want to have an exclusively computational program that operates for long
periods or runs on a cluster. This will need to use the Model without any code from the
View or Controller

2. You may want to replace or augment the visualization, and do not want to have to
replace all code

3. You may decide to create different types of GUIs and again want to reuse as much code
as possible.

Note that this is only a paradigm. For scientific software, sometimes it makes sense to

combine the view and controller, or more rarely, the model and view, but always keep the

GUI separate from the computation/data storage module(s).

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 2

Getting information into an event handler

= One of the problems in event-driven programming is that events live in the
Controller layer, but affect parameters in the Model and/or operation of the View.
Even though when will have access to the Model and View objects when the code
to build the GUI and setup the bind is executing, there is no way to pass this into
the event handler.

= One choice is to place the event handler in the Model or View objects, but this has
problems since this is often GUI-specific code that really should live in the
Controller.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

13
10/19/11

>

Example of the
information routing
problem

This code has two classes:

= mycalc (for data/computation) &
= myframe (GUI implementation)
we really want them separate

My hokey GUI example: pressing
button reads TextCtrl and then
disables it so it can’t be changed.

The GUI part of this is implemented
here, but | need to get the value |
read into the mycalc object.

= How can | do this?

The Advanced Photon Source is an Office of Science User Facility operated for the U.S

import wx
class mycalc: e 0 O
def init (self):
self.myvar = None

def SetVar(self,val):

self.myvar = val XXX

class myframe(wx.Frame):

def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,"read")
btn.Bind(wx.EVT BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
self.tc = wx.TextCtrl(pnl, -1,

'xxx',size=(100,-1))

sizer.Add(self.tc,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

def OnClick(self, event):
print 'Value = ',self.tc.GetValue()
but how do I get value into CalcObj?
self.tc.Disable() # disable the TextCtrl

app = wx.PySimpleApp() # create the App
CalcObj = mycalc()
frm = myframe()

app.MainLoop() wx10.py

>

Solution: save pointers
to required objects

Note that the only way to get
information into the event handler is
by defining variables in the class for
later use. This is usually done in the
__init__ function for the class.

When | create frm (class myframe), |
pass it a reference to the data object
(CalcObj, class mycalc).

This gets saved in the myframe class

The OnClick method can then access
the data object

The Advanced Photon Source is an Office of Science User Facility operated for the U.S.

class myframe(wx.Frame):

def init (self,DataObj):
wx.Frame. init (self, None)
self.DataObj = DataObj
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,"read")
btn.Bind(wx.EVT BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
self.tc = wx.TextCtrl(pnl, -1,

'xxx',size=(100,-1))

sizer.Add(self.tc,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

def OnClick(self, event):

here I put the value into CalcObj:
self.DataObj.SetVar(self.tc.GetValue())
self.tc.Disable() # disable the TextCtrl

app = wx.PySimpleApp() # create the App
CalcObj = mycalc()

frm = myframe(CalcObj)

app.MainLoop()
print 'saved val =

,CalcObj.myvar
wx10a.py

15
10/19/11

Implementing a generic event handler

= Save info in dict(s) indexed by widget Id or by widget object that will be used to
determine what the event handler will do

= |f the event handler will need to do different things based on what type of event
occurred, also look up the “event type 1d”
(for example tId = wx.EVT BUTTON.typeId).

Use a nested dict?

In the event handler use event parameter to get information on the widget causing
the event and the event type:

event.Getld(): provides the Id of the widget that generated the event
event.GetEventObject(): provides the object that generated the event
event.GetEventType(): provides the event type Id

= Tosee what else is available, use print (dir (event)). Note that different
types of events have different methods and values defined,

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 o

Generic Event Handler Example

class mywxframe(wx.Frame):

def init (self,DataObj):
wx.Framc. lnit (sell, MNone)
self.DataObj = DataObj
self.DisableList = {}
self.SetList = {}
pni — v Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,"read")
btn.Bind(wx.EVT_ BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
self.tc = wx.TextCtrl(pnl, -1,

'XXX',81lze—{100,-1))

id = btn.GetId()
print 'Button id =',id
self.DisableList[id] = self.tc
self.SetList[id] = self.DataObj.SetVar

sizer.Add(selr.tc,Uu,wx.ALL,10)
sizer.Fit(self)

self.Show() wx10b.py

def OnClick(self, event):

id = event.GetId()

print 'Button pressed is =',id

sl = self.SetList.get(id)

if sl is not None:
sl(self.tc.GetValue())

disabl = self.DisableList.get(id)

if disabl is not None:
disabl.Disable() # disable

bht3:tutorial tobyS python wx10b.py
Button id =-203

Button pressed is =-203

saved val = yyy

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

17
10/19/11

Another variant, use object as a key rather than id

class mywxframe(wx.Frame):

def init (self,DataObj):
wx.Frame. init (self, None)
self.DataObj = DataObj
self.DisableList = {}
self.SetList = {}
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,"read")
btn.Bind(wx.EVT BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
self.tc = wx.TextCtrl(pnl, -1,

'xxx',size=(100,-1))

print 'Button =',6btn
self.DisableList[btn] = self.tc
self.SetList[btn] = self.DataObj.SetVar

sizer.Add(self.tc,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

def OnClick(self, event):
btn = event.GetEventObject ()
print 'EventObject =',6btn
sl = self.SetList.get(btn)
if sl is not None:
sl(self.tc.GetValue())
dis = self.DisableList.get(btn)
if dis is not None:
dis.Disable() # disable

wx10c.py

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

S

18
10/19/11

S

Validators

Validators are classes that can be associated with TextCtrl widgets. The validator can
check each character as it is typed into the box (and possibly ignore invalid characters)
or it can check if the contents is valid.

| have a pair of sample validators on the PIG web page (file validators.py:
https://confluence.aps.anl.gov/download/attachments/2523138/validators.py)

= One enforces that the values entered match that of a unsigned or optionally
signed integer. Any other character is ignored.

— When the box loses focus, the entire contents is checked to make sure it is a valid
integer. If not, the widget is highlighted

— Optionally a function can be supplied to execute on a valid integer
— Minimum and maximum values can be specified
= The other is for floats, optionally with exponential notation (e or E is allowed)

— When the box loses focus, the entire contents is checked to make sure it is a valid float.
If not, the widget is highlighted
— Optionally a function can be supplied to execute on a valid float

The validator is used very simply, by adding a parameter to the TextCtrl

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

19
10/19/11

Validator example

import wx
import validators
class mycalc:
def init (self):
self.myvar = None
def Setvar(self,val,obj):
self.myvar = val

app = wx.PySimpleApp() # create App
CalcObj = mycalc()
frm = mywxframe(CalcObj)

app.MainLoop()
print 'saved val =

',CalcObj.myvar

800

Only integers here

123-

Floats here

123e4
/.
R

class mywxframe(wx.Frame):
def init (self,DataObj):

wx.Frame. init (self, None)
self.DataObj = DataObj

pnl = wx.Panel(self)

sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)

wx.StaticText(pnl, -1,
"Only integers here")
sizer.Add(w,0,wx.ALL,10)
tc = wx.TextCtrl(
pnl, -1, size=(100,-1),
validator=validators.IntValidator
positiveonly=False))
sizer.Add(tc,0,wx.ALL,5)

w=

w = wx.StaticText(pnl, -1,"Floats here")
sizer.Add(w,0,wx.ALL,10)
tc = wx.TextCtrl(
pnl, -1,size=(100,-1),
validator=validators.FloatValidator(
DataObj.SetVar))
sizer.Add(tc,0,wx.ALL,5)

sizer.Fit(self)

self.Show() wx11l.py

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. D

S

https://confluence.aps.anl.gov/download/

attachments/2523138/validators.py)

Modal dialogs

Modal dialogs are used to display information to the user (such as an error message)
or get input from the user via a new window; the program does not allow anything
else to occur until the user has closed the new window.

= The easiest way to implement a modal dialog is to use one of the many “stock”
widgets in wxPython, such as DirDialog, FlleDialog, MessageDialog,
TextEntryDialog (~15 choices in total)

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

O 10/19/11 2

MessageDialog Example

class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,
"Show message")
btn.Bind(wx.EVT BUTTON,
self.OnClick)

sizer.Add(btn,0,wx.ALL,10)
self.Show()

def OnClick(self, event):
dlg = wx.MessageDialog(self,
"Prompt:\n\tYou rang?",
'Title: Waddayawant?',
wx.0K | wx.CANCEL |
wx.ICON QUESTION)
if dlg.ShowModal() == wx.ID OK:
print "OK!"
dlg.Destroy|()

N |
OO0
(Show message)

wx12.py

/
e —

Title: Waddayawant?
Prompt:
You rang?
(Cancel) 6—0!(—)

The dialog is created in response to
the button. The main window is

inactive when the dialog is open.

<\'\ The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

.y —

I

22
10/19/11

FileDialog Example

class mywxframe(wx.Frame):
def init (self):
wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,

"Get file")
btn.Bind(wx.EVT BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

def OnClick(self, event):
wildcard = "pickle files (*.pkl)|*.pkl"
dlg = wx.FileDialog(
self, message="Save as...",
defaultDir="/tmp",
defaultFile="test.pkl",
wildcard=wildcard,
#style=wx.FD_ OPEN
style=wx.FD SAVE)
if dlg.ShowModal/()
print 'path =
else:
print 'Cancelled!'

wx.ID OK:
',dlg.GetPath()

wx12a.py

FROVAaTTCCU T TTOToTT o TSTaTT O T TCTT TTaCITy UperateuT ToTpanrc

Cemtiie)

7

Save As: ltest.pkl] B
(«/») (2= m) (E@tmp B @
¥ DEVICES Name ~ Date Modified v
I BHT3 x.pkl 10:53 AM m
= BHT3 HD x.pickle 10:52 AM
@ TM1TB a 128a34eacc55c¢ 10:43 AM
(] lecture9 8:53 AM
» SHARED (] lecture8b 8:53 AM
¥ PLACES (] lecture8a 8:53 AM
Desktop [lecture7b 8:53 AM A
£ toby 4| [lecture7a 8:53 AM A
A e Y| £ hamownrbR 0.c2 AM)
Format: [pickle files (*.pkl) Q
New Folder (Cancel) (Save 3
W

The dialog is created in response to
the button. The main window is
inactive when the dialog is open.
The dialog uses the native file
browser for the OS/WM of
computer

Energy Office of Science by Argonne National Laboratory

23
10/19/11

For complex modal dialogs, subclass wx.Dialog

class TestDialog(wx.Dialog):
def init (self, parent, ID):
Instead of calling wx.Dialog. init we use this:
pre = wx.PreDialog()
pre.Create(parent, ID, "Override the defaults”, wx.DefaultPosition,
wx.DefaultSize, wx.DEFAULT DIALOG_ STYLE)
self.PostCreate(pre)
sizer = wx.BoxSizer (wx.VERTICAL)
label = wx.StaticText(self, -1, "Variables used in data collection")
sizer.Add(label, 0, wx.ALIGN CENTRE |wx.ALL, 5)
line = wx.StaticLine(self, -1, size=(20,-1), style=wx.LI HORIZONTAL)
sizer.Add(line, 0, wx.GROW|wx.ALIGN CENTER VERTICAL|wx.RIGHT|wx.TOP, 5)
label = wx.StaticText(self, -1, "(useful stuff goes here)")
sizer.Add(label, 0, wx.ALIGN CENTRE [wx.ALL, 5)
btnsizer = wx.StdDialogButtonSizer()
btn = wx.Button(self, wx.ID OK)
btn.SetDefault()
btnsizer.AddButton(btn)
btn = wx.Button(self, wx.ID CANCEL)
btnsizer.AddButton(btn)
btnsizer.Realize()
sizer.Add(btnsizer, 0, wx.ALIGN CENTER VERTICAL|wx.ALL, 5)
self.SetSizer(sizer)
sizer.Fit(self)
pre.CenterOnParent () wx14.py

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 24

Using the subclassed wx.Dialog (pretty much like

any other Dialog)

import wx
class mywxframe(wx.Frame):
def init (self):

wx.Frame. init (self, None)
pnl = wx.Panel(self)
sizer = wx.BoxSizer (wx.VERTICAL)
pnl.SetSizer(sizer)
btn = wx.Button(pnl, -1,

"Get stuff")
btn.Bind(wx.EVT BUTTON, self.OnClick)
sizer.Add(btn,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

def OnClick(self, event):

dlg = TestDialog(self, -1)

returns after window is closed

val = dlg.ShowModal()

if val != wx.ID OK:
dlg.Destroy() # cancel was pressed
return

do something with dlg contents here

dlg.Destroy() # close it

T—— yoP

S

return le4py

Variables used in data collection

(useful stuff goes here)

(Cancel) (OK)

Energy Office of Science by Argonne National Laboratory

25
10/19/11

Non-modal windows

Frames can be “top level” — with
no parents. Each window has no

import wx parent and thus is independent.
class mywxframe(wx.Frame):
def init (self,parent,lbl):
wx.Frame. init (self, parent) are closed
pnl = wx.Panel(self)
sizer = wx.BoxSizer(wx.VERTICAL)
pnl.SetSizer(sizer)
w = wx.StaticText(pnl, -1, 1bl)
sizer.Add(w,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

= The Event loop runs until all

app = wx.PySimpleApp() # create the App
frml = mywxframe(None, 'lst window')

frm2 mywxframe (None, '2nd window')

frm3 mywxframe (None, '3rd window')
app.MainLoop()

print 'event loop done' va13,py

A

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

o 10/19/11 2

Child windows

Here each new frame is a child of the
former. Only the first is “top level” (no

import wx parent).
class mywxframe(wx.Frame): = Closing the 2" window kills the 3¢
def init (self,parent,lbl):
wx.Frame. init (self, parent) = Closing the 15t window kills all

pnl = wx.Panel(self) - .
sizer = wx.BoxSizer(wx.VERTICAL) The Event |00p runs until all are

pnl.SetSizer(sizer) closed which is now tied to the 1%t
w = wx.StaticText(pnl, -1, 1bl) window.
sizer.Add(w,0,wx.ALL,10)
sizer.Fit(self)
self.Show()

app = wx.PySimpleApp() # create the App
frml = mywxframe(None, 'lst window')
frm2 = mywxframe(frml, '2nd window\nchild of 1lst')

frm3 = mywxframe(frm2, '3rd window\nchild of 2nd')
app.MainLoop() 2nd window
print 'event loop done’ wx13a.py child of 1st

4

3rd window
child of 2nd

/

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Labora

G 10/19/11 2

S

Homework

= Create a small wxPython program to do something useful. Let me know what you
did or where you get stuck.

The Advanced Photon Source is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Argonne National Laboratory

10/19/11

28

